期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
超高维数据下部分线性可加分位数回归模型的变量选择
1
作者 白永昕 钱曼玲 田茂再 《统计与决策》 CSSCI 北大核心 2024年第9期43-48,共6页
在超高维数据中,一方面,协变量的维数可能远远大于样本量,甚至随着样本量以指数级的速度增长;另一方面,超高维数据通常是异质的,协变量对条件分布中心的影响可能与他们对尾部的影响大不相同,甚至会出现重尾以及异常点的复杂情况。文章... 在超高维数据中,一方面,协变量的维数可能远远大于样本量,甚至随着样本量以指数级的速度增长;另一方面,超高维数据通常是异质的,协变量对条件分布中心的影响可能与他们对尾部的影响大不相同,甚至会出现重尾以及异常点的复杂情况。文章在协变量维度发散且为超高维的情况下研究了部分线性可加分位数回归模型的变量选择和稳健估计问题。首先,为了实现模型的稀疏性和非参数光滑性,引入了一种非凸Atan双惩罚,并采用分位迭代坐标下降算法来解决所提方法的优化问题。在选择适当正则化参数的情况下,证明了所提双惩罚估计量的理论性质。其次,通过模拟研究对所提方法的性能进行验证。模拟结果表明,所提方法比其他惩罚方法具有更好的表现,尤其是在数据存在重尾的情况下。最后,通过基于癌症筛查病人血液样本数据的实证来验证所提方法的实用性。 展开更多
关键词 超高维数据 分位数回归 部分线性可加 变量选择 Atan双惩罚
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部