In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-valid...In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-validation (GCV) and L-curve criteria with the Twomey-NNLS algorithm in parameter optimization. Numerical simulation and experimental validation show that the resistance of the newly developed algorithms to measurement errors can be improved leading to stable inversion results for unimodal particle size distribution.展开更多
基金The present work is supported by National Science Foundation of China (NSFC 50376041)the National High Technology Development 863 Program (2006AA03Z349)the ShuGuang project of Shanghai Educational Development Foundation (04SG49), which are gratefully acknowledged.
文摘In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-validation (GCV) and L-curve criteria with the Twomey-NNLS algorithm in parameter optimization. Numerical simulation and experimental validation show that the resistance of the newly developed algorithms to measurement errors can be improved leading to stable inversion results for unimodal particle size distribution.