Ovarian cancer is one of the most aggressive and heterogeneous female tumors in the world,and serous ovarian cancer(SOC)is of particular concern for being the leading cause of ovarian cancer death.Due to its clinical ...Ovarian cancer is one of the most aggressive and heterogeneous female tumors in the world,and serous ovarian cancer(SOC)is of particular concern for being the leading cause of ovarian cancer death.Due to its clinical and biological complexities,ovarian cancer is still considered one of the most di±cult tumors to diagnose and manage.In this study,three datasets were assembled,including 30 cases of serous cystadenoma(SCA),30 cases of serous borderline tumor(SBT),and 45 cases of serous adenocarcinoma(SAC).Mueller matrix microscopy is used to obtain the polarimetry basis parameters(PBPs)of each case,combined with a machine learning(ML)model to derive the polarimetry feature parameters(PFPs)for distinguishing serous ovarian tumor(SOT).The correlation between the mean values of PBPs and the clinicopathological features of serous ovarian cancer was analyzed.The accuracies of PFPs obtained from three types of SOT for identifying dichotomous groups(SCA versus SAC,SCA versus SBT,and SBT versus SAC)were 0.91,0.92,and 0.8,respectively.The accuracy of PFP for identifying triadic groups(SCA versus SBT versus SAC)was 0.75.Correlation analysis between PBPs and the clinicopathological features of SOC was performed.There were correlations between some PBPs(δ,β,q_(L),E_(2),rqcross,P_(2),P_(3),P_(4),and P_(5))and clinicopathological features,including the International Federation of Gynecology and Obstetrics(FIGO)stage,pathological grading,preoperative ascites,malignant ascites,and peritoneal implantation.The research showed that PFPs extracted from polarization images have potential applications in quantitatively differentiating the SOTs.These polarimetry basis parameters related to the clinicopathological features of SOC can be used as prognostic factors.展开更多
High-grade squamous intraepithelial lesion(HSIL)is regarded as a serious precancerous state of cervix,and it is easy to progress into cervical invasive carcinoma which highlights the importance of earlier diagnosis an...High-grade squamous intraepithelial lesion(HSIL)is regarded as a serious precancerous state of cervix,and it is easy to progress into cervical invasive carcinoma which highlights the importance of earlier diagnosis and treatment of cervical lesions.Pathologists examine the biopsied cervical epithelial tissue through a microscope.The pathological examination will take a long time and sometimes results in high inter-and intra-observer variability in outcomes.Polarization imaging techniques have broad application prospects for biomedical diagnosis such as breast,liver,colon,thyroid and so on.In our team,we have derived polarimetry feature parameters(PFPs)to characterize microstructural features in histological sections of breast tissues,and the accuracy for PFPs ranges from 0.82 to 0.91.Therefore,the aim of this paper is to distinguish automatically microstructural features between HSIL and cervical squamous cell carcinoma(CSCC)by means of polarization imaging techniques,and try to provide quantitative reference index for patho-logical diagnosis which can alleviate the workload of pathologists.Polarization images of the H&E stained histological slices were obtained by Mueller matrix microscope.The typical path-ological structure area was labeled by two experienced pathologists.Calculate the polarimetry basis parameter(PBP)statistics for this region.The PBP statistics(stat PBPs)are screened by mutual information(MI)method.The training method is based on a linear discriminant analysis(LDA)classier whichnds the most simplied linear combination from these stat PBPs and the accuracy remains constant to characterize the specic microstructural feature quantitatively in cervical squamous epithelium.We present results from 37 clinical patients with analysis regions of cervical squamous epithelium.The accuracy of PFP for recognizing HSIL and CSCC was 83.8%and 87.5%,respectively.This work demonstrates the ability of PFP to quantitatively charac-terize the cervical squamous epithelial lesions in the H&E pathological sections.Si展开更多
基金supported by the Guangming District Economic Development Special Fund(2020R01043).
文摘Ovarian cancer is one of the most aggressive and heterogeneous female tumors in the world,and serous ovarian cancer(SOC)is of particular concern for being the leading cause of ovarian cancer death.Due to its clinical and biological complexities,ovarian cancer is still considered one of the most di±cult tumors to diagnose and manage.In this study,three datasets were assembled,including 30 cases of serous cystadenoma(SCA),30 cases of serous borderline tumor(SBT),and 45 cases of serous adenocarcinoma(SAC).Mueller matrix microscopy is used to obtain the polarimetry basis parameters(PBPs)of each case,combined with a machine learning(ML)model to derive the polarimetry feature parameters(PFPs)for distinguishing serous ovarian tumor(SOT).The correlation between the mean values of PBPs and the clinicopathological features of serous ovarian cancer was analyzed.The accuracies of PFPs obtained from three types of SOT for identifying dichotomous groups(SCA versus SAC,SCA versus SBT,and SBT versus SAC)were 0.91,0.92,and 0.8,respectively.The accuracy of PFP for identifying triadic groups(SCA versus SBT versus SAC)was 0.75.Correlation analysis between PBPs and the clinicopathological features of SOC was performed.There were correlations between some PBPs(δ,β,q_(L),E_(2),rqcross,P_(2),P_(3),P_(4),and P_(5))and clinicopathological features,including the International Federation of Gynecology and Obstetrics(FIGO)stage,pathological grading,preoperative ascites,malignant ascites,and peritoneal implantation.The research showed that PFPs extracted from polarization images have potential applications in quantitatively differentiating the SOTs.These polarimetry basis parameters related to the clinicopathological features of SOC can be used as prognostic factors.
基金the Guangming District Economic Development Special Fund(2020R01043)。
文摘High-grade squamous intraepithelial lesion(HSIL)is regarded as a serious precancerous state of cervix,and it is easy to progress into cervical invasive carcinoma which highlights the importance of earlier diagnosis and treatment of cervical lesions.Pathologists examine the biopsied cervical epithelial tissue through a microscope.The pathological examination will take a long time and sometimes results in high inter-and intra-observer variability in outcomes.Polarization imaging techniques have broad application prospects for biomedical diagnosis such as breast,liver,colon,thyroid and so on.In our team,we have derived polarimetry feature parameters(PFPs)to characterize microstructural features in histological sections of breast tissues,and the accuracy for PFPs ranges from 0.82 to 0.91.Therefore,the aim of this paper is to distinguish automatically microstructural features between HSIL and cervical squamous cell carcinoma(CSCC)by means of polarization imaging techniques,and try to provide quantitative reference index for patho-logical diagnosis which can alleviate the workload of pathologists.Polarization images of the H&E stained histological slices were obtained by Mueller matrix microscope.The typical path-ological structure area was labeled by two experienced pathologists.Calculate the polarimetry basis parameter(PBP)statistics for this region.The PBP statistics(stat PBPs)are screened by mutual information(MI)method.The training method is based on a linear discriminant analysis(LDA)classier whichnds the most simplied linear combination from these stat PBPs and the accuracy remains constant to characterize the specic microstructural feature quantitatively in cervical squamous epithelium.We present results from 37 clinical patients with analysis regions of cervical squamous epithelium.The accuracy of PFP for recognizing HSIL and CSCC was 83.8%and 87.5%,respectively.This work demonstrates the ability of PFP to quantitatively charac-terize the cervical squamous epithelial lesions in the H&E pathological sections.Si