期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于并行多通道卷积长短时记忆网络的轴承寿命预测方法
被引量:
12
1
作者
曾大懿
杨基宏
+2 位作者
邹益胜
张继冬
宋小欣
《中国机械工程》
EI
CAS
CSCD
北大核心
2020年第20期2454-2462,2471,共10页
在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前...
在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前端为并行多通道卷积网络(PMCCNN),提取信号特征,挖掘数据的时序特性,并采用逐层训练和微调的方式提升参数的收敛性;后端为长短时记忆(LSTM)网络,基于特征进行剩余使用寿命预测,并采用加权平均的方法对预测结果进行平滑处理。在一个轴承加速寿命实验的公开数据集上使用留一法验证了该模型的准确性,实验结果表明:所提模型的平均误差与最大误差分别比传统的卷积神经网络(CNN)低23.38%和15.84%,比传统的LSTM低24.14%和19.01%,比卷积长短时记忆网络(CNN-LSTM)低30.32%和23.09%。
展开更多
关键词
多通道
并行多通道卷积神经网络
长短时记忆网络
轴承
剩余使用寿命预测
下载PDF
职称材料
题名
基于并行多通道卷积长短时记忆网络的轴承寿命预测方法
被引量:
12
1
作者
曾大懿
杨基宏
邹益胜
张继冬
宋小欣
机构
西南交通大学机械工程学院
中车青岛四方机车车辆股份有限公司
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2020年第20期2454-2462,2471,共10页
基金
国家重点研发计划资助项目(2017YFB1201201-06)
重庆市教育委员会科学技术研究资助项目(KJZD-K201805801)。
文摘
在预测轴承剩余使用寿命时,数据间的时序特性是一个可以利用的重要隐藏信息。为了更好地提取具有时序信息的特征用于预测,提出了一种基于并行多通道卷积长短时记忆网络(PMCCNN-LSTM)的剩余使用寿命预测模型。该模型主要由两部分组成:前端为并行多通道卷积网络(PMCCNN),提取信号特征,挖掘数据的时序特性,并采用逐层训练和微调的方式提升参数的收敛性;后端为长短时记忆(LSTM)网络,基于特征进行剩余使用寿命预测,并采用加权平均的方法对预测结果进行平滑处理。在一个轴承加速寿命实验的公开数据集上使用留一法验证了该模型的准确性,实验结果表明:所提模型的平均误差与最大误差分别比传统的卷积神经网络(CNN)低23.38%和15.84%,比传统的LSTM低24.14%和19.01%,比卷积长短时记忆网络(CNN-LSTM)低30.32%和23.09%。
关键词
多通道
并行多通道卷积神经网络
长短时记忆网络
轴承
剩余使用寿命预测
Keywords
multi
-
channel
parallel
multi
-
channel
convolution
neural
network
(
pmccnn
)
long
short
term
memory(LSTM)
network
bearing
remaining
useful
life(RUL)prediction
分类号
TH133 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于并行多通道卷积长短时记忆网络的轴承寿命预测方法
曾大懿
杨基宏
邹益胜
张继冬
宋小欣
《中国机械工程》
EI
CAS
CSCD
北大核心
2020
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部