近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket...近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.展开更多
Reversible integer mapping (or integer transform) is a useful way to realize lossless coding, and this technique has been used for multi-component image compression in the new international image compression standard ...Reversible integer mapping (or integer transform) is a useful way to realize lossless coding, and this technique has been used for multi-component image compression in the new international image compression standard JPEG 2000. For any nonsingular linear transform of finite dimension, its integer transform can be implemented by factorizing the transform matrix into 3 triangular elementary reversible matrices (TERMs) or a series of single-row elementary reversible matrices (SERMs). To speed up and parallelize integer transforms, we study block TERM and SERM factorizations in this paper. First, to guarantee flexible scaling manners, the classical determinant (det) is generalized to a matrix function, DET, which is shown to have many important properties analogous to those of det. Then based on DET, a generic block TERM factorization, BLUS, is presented for any nonsingular block matrix. Our conclusions can cover the early optimal point factorizations and provide an efficient way to implement integer transforms for large matrices.展开更多
文摘近年来,基于张量补全的频谱制图得到了广泛研究.目前用于频谱制图的张量补全算法大多隐含地假设张量具有平衡特性,而对于非平衡张量,难以利用其低秩性估计完整的张量信息,导致补全算法性能受损.本文提出基于重叠Ket增强(Overlapping Ket Augmentation,OKA)和张量列车(Tensor Train,TT)的非平衡频谱制图算法,以解决非平衡张量在应用传统张量补全算法时性能下降的问题.首先使用OKA将低阶高维张量表示为高阶低维张量,在无信息损耗的情况下解决非平衡张量无法利用其低秩性进行张量补全的问题;然后使用TT矩阵化得到较平衡的矩阵,在维度较平衡条件下提高补全算法的精确度;最后利用高阶低维张量的低秩性,使用并行矩阵分解或基于F范数的无奇异值分解(Singular Value Decomposition Free,SVDFree)算法完成张量补全.仿真结果表明,针对非平衡张量,所提方案与现有的张量补全算法相比,可以获得更精确的无线电地图,同时所提SVDFree算法具有更低的计算复杂度.
文摘Reversible integer mapping (or integer transform) is a useful way to realize lossless coding, and this technique has been used for multi-component image compression in the new international image compression standard JPEG 2000. For any nonsingular linear transform of finite dimension, its integer transform can be implemented by factorizing the transform matrix into 3 triangular elementary reversible matrices (TERMs) or a series of single-row elementary reversible matrices (SERMs). To speed up and parallelize integer transforms, we study block TERM and SERM factorizations in this paper. First, to guarantee flexible scaling manners, the classical determinant (det) is generalized to a matrix function, DET, which is shown to have many important properties analogous to those of det. Then based on DET, a generic block TERM factorization, BLUS, is presented for any nonsingular block matrix. Our conclusions can cover the early optimal point factorizations and provide an efficient way to implement integer transforms for large matrices.