This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally s...Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally studied for supercritical fluids. Two types of flow excursion occur in a single tube. Type Ⅰ and Type Ⅱ excursions, and they are corresponding to decreasing and increasing flow rate respectively. They can trigger flow maldistribution between parallel tubes and the hysteresis phenomenon of flow distribution. The effects of system parameters, including inlet temperature,system pressure, and heat flux, on flow distribution were analyzed. In addition, the relationship between flow excursion and the pseudo-critical interval proposed in the literature was established according to the heated tube outlet temperature at the onset of flow instability. Finally, the flow excursion instability boundary was obtained using two dimensionless parameters. These experimental results can provide helpful insight on the mechanism of Scramjet regenerative cooling.展开更多
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金co-supported by the Open Fund of Key Laboratory of Power Research of China(No.2017-Ⅲ-0005-0029)the National Natural Science Foundation of China(No.51776167).
文摘Flow instability of supercritical hydrocarbon fuel is a crucial issue in scramjet regenerative cooling structure. In this study, flow excursion instability and flow distribution in parallel tubes were experimentally studied for supercritical fluids. Two types of flow excursion occur in a single tube. Type Ⅰ and Type Ⅱ excursions, and they are corresponding to decreasing and increasing flow rate respectively. They can trigger flow maldistribution between parallel tubes and the hysteresis phenomenon of flow distribution. The effects of system parameters, including inlet temperature,system pressure, and heat flux, on flow distribution were analyzed. In addition, the relationship between flow excursion and the pseudo-critical interval proposed in the literature was established according to the heated tube outlet temperature at the onset of flow instability. Finally, the flow excursion instability boundary was obtained using two dimensionless parameters. These experimental results can provide helpful insight on the mechanism of Scramjet regenerative cooling.