将差异工件的批调度问题扩展到两客户生产环境,建立了两个客户分别以最小化制造时间跨度和最小化最大工件延迟时间为生产目标的差异工件平行机批调度模型.首先提出了一种启发式算法TSEDD(two-set earliest due date)对分批方案进行排序...将差异工件的批调度问题扩展到两客户生产环境,建立了两个客户分别以最小化制造时间跨度和最小化最大工件延迟时间为生产目标的差异工件平行机批调度模型.首先提出了一种启发式算法TSEDD(two-set earliest due date)对分批方案进行排序并安排到平行机,然后设计了一个多目标蚁群优化算法MOACO(multi-objective ant colony optimization)对不同客户中的工件进行分批并结合TSEDD完成对问题Pareto最优解集的求解.实验结果表明,与经典的多目标问题求解算法NSGA-Ⅱ和SPEA2算法相比,MOACO具有较好的求解效果,且随着问题中工件规模的增大,算法的优势更加明显.展开更多
文摘将差异工件的批调度问题扩展到两客户生产环境,建立了两个客户分别以最小化制造时间跨度和最小化最大工件延迟时间为生产目标的差异工件平行机批调度模型.首先提出了一种启发式算法TSEDD(two-set earliest due date)对分批方案进行排序并安排到平行机,然后设计了一个多目标蚁群优化算法MOACO(multi-objective ant colony optimization)对不同客户中的工件进行分批并结合TSEDD完成对问题Pareto最优解集的求解.实验结果表明,与经典的多目标问题求解算法NSGA-Ⅱ和SPEA2算法相比,MOACO具有较好的求解效果,且随着问题中工件规模的增大,算法的优势更加明显.
基金Supported by the National Natural Science Foundation(No.11071142)the Foundation of Qufu Normal University(No.X J0714)the Foundation of Qufu Normal University(No.X J200901).