Pancreatic metastases are rare,with a reported incidence varying from 1.6%to 11%in autopsy studies of patients with advanced malignancy.In clinical series,the frequency of pancreatic metastases ranges from 2%to 5%of a...Pancreatic metastases are rare,with a reported incidence varying from 1.6%to 11%in autopsy studies of patients with advanced malignancy.In clinical series,the frequency of pancreatic metastases ranges from 2%to 5%of all pancreatic malignant tumors.However,the pancreas is an elective site for metastases from carcinoma of the kidney and this peculiarity has been reported by several studies.The epidemiology,clinical presentation,and treatment of pancreatic metastases from renal cell carcinoma are known from singleinstitution case reports and literature reviews.Thereis currently very limited experience with the surgical resection of isolated pancreatic metastasis,and the role of surgery in the management of these patients has not been clearly defined.In fact,for many years pancreatic resections were associated with high rates of morbidity and mortality,and metastatic disease to the pancreas was considered to be a terminal-stage condition.More recently,a significant reduction in the operative risk following major pancreatic surgery has been demonstrated,thus extending the indication for these operations to patients with metastatic disease.展开更多
Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of ...Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of PC cases, is characterized by an intense stromal desmoplastic reaction surrounding the cancer cells. Cancer-associated fibroblasts(CAFs) are the main effector cells in the desmoplastic reaction, and pancreatic stellate cells are the most important source of CAFs. However, other important components of the PC stroma are inflammatory cells and endothelial cells. The aim of this review is to describe the complex interplay between PC cells and the cellular and noncellular components of the tumour stroma. Published data have indicated that the desmoplastic stroma protects PC cells against chemotherapy and radiation therapy and that it might promote the proliferation and migration of PC cells. However, in animal studies, experimental depletion of the desmoplastic stroma and CAFs has led to more aggressive cancers. Hence, the precise role of the tumour stroma in PC remains to be elucidated. However, it is likely that a contextdependent therapeutic modification, rather than pure depletion, of the PC stroma holds potential for the development of new treatment strategies for PC patients.展开更多
AIM: To investigate whether KAI1, as a metastasis suppressor gene, is associated with invasive and metastatic ability of pancreatic cancer cells.METHODS: KAI1 gene was transfected into pancreatic cancer cell line MiaP...AIM: To investigate whether KAI1, as a metastasis suppressor gene, is associated with invasive and metastatic ability of pancreatic cancer cells.METHODS: KAI1 gene was transfected into pancreatic cancer cell line MiaPaCa Ⅱ by liposomes selected with G418. Expression of transfected cells was measured by Western blotting, immunofluorescence and immunocytochemistry. Tumor cell invasion and metastatic ability were detected through gelatinase activity and reconstituted basement membrane (Matrigel) assay. pCMV-KAI1 was directly injected into the heterotopic human pancreatic adenocarcinoma successfully established in the groin of BALB/C nude mice, by subcutaneous injection of MiaPaCa Ⅱ pancreatic cancer cells. The statistical analysis between groups was determined by Student's two tailed t test.RESULTS: By Western blotting, MiaPaCa Ⅱ cells transfected by KAI1 gene indicated KAI1 expression at approximately 29.1 kDa. Cytoplasm staining was positive and uniformly spread in transfected cancer cells, using immunohistochemistry and immunofluorescence. The most obvious difference was present after 30 h (MiaPaca Ⅱ 43.6 ± 9.42, pCMV-MiaPaca Ⅱ 44.8 ± 8.56, pCMV-KAI1-MiaPaca Ⅱ 22.0 ± 4.69, P < 0.05). Gelatinolysis revealed a wider and clearer band of gelatinolytic activity in non-transfected than in transfected cells (MiaPaCa Ⅱ cells 30.8 ± 0.57, transfected cells 28.1 ± 0.65, P < 0.05). In vivo tumor growth rates of KAI1 transfectants with KAI1-Lipofectamine 1.22 ± 0.31 in A group were lower than control 4.61 ± 1.98 and pCMV-KAI 11.67 ± 0.81. Analyses of metastases with and without KAI1 transfection in mice were different in liver and lung between controls 1.62 ± 0.39, 0.45 ± 0.09, pCMV-KAI 1.01 ± 0.27, 0.33 ± 0.09 and KAI1-Lipofectamine 0.99 ± 0.21, 0.30 ± 0.09 respectively (P < 0.05).CONCLUSION: High expression of KAI1 gene was found in transfected MiaPaCa Ⅱ human pancreatic cancer cells with lower metastatic ability. KAI1 gene plays an important role in inhibiting metastasis of pancreatic cancer 展开更多
Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca<sup>2+</sup>) is a versatile ca...Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca<sup>2+</sup>) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca<sup>2+</sup> overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca<sup>2+</sup> signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca<sup>2+</sup> elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca<sup>2+</sup> from stores in the intracellular endoplasmic reticulum and/or increased Ca<sup>2+</sup> entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca<sup>2+</sup> by the sarco/endoplasmic reticulum Ca<sup>2+</sup>-activated ATPase and plasma membrane Ca<sup>2+</sup>-ATPase pumps, which contribute to Ca<sup>2+</sup> overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca<sup>2+</sup> signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca<sup>2+</sup> signals in the pathogenesis of pancreatitis.展开更多
Pancreatic carcinomas with acinar differentiation are rare,accounting for 1%-2% of adult pancreatic tumors; they include pancreatic acinar cell carcinoma(PACC),pancreatoblastoma,and carcinomas of mixed differentiation...Pancreatic carcinomas with acinar differentiation are rare,accounting for 1%-2% of adult pancreatic tumors; they include pancreatic acinar cell carcinoma(PACC),pancreatoblastoma,and carcinomas of mixed differentiation. Patients with PACC have a prognosis better than pancreatic ductal adenocarcinomas but worse than pancreatic neuroendocrine tumors. Reports of overall survival range from 18 to 47 mo. A literature review on PACCs included comprehensive genomic profiling and whole exome sequencing on a series of more than 70 patients as well as other diagnostic studies including immunohistochemistry. Surgical resection of PACC is the preferred treatment for localized and resectable tumors. The efficacy of adjuvant treatment is unclear. Metastatic PACCs are generally not curable and treated with systemic chemotherapy. They are moderately responsive to chemotherapy with different regimens showing various degrees of response in case reports/series. Most of these regimens were developed to treat patients with pancreatic ductal adenocarcinomas or colorectal adenocarcinomas. Review of PACC's molecular profiling showed a number of gene alterations such as: SMAD4,BRAF,BRCA2,TP53,RB1,MEN1,JAK-1,BRCA-1,BRCA-2,and DNA mismatch repair abnormalities. PACCs had multiple somatic mutations with some targetable with available drugs. Therefore,molecular profiling of PACC should be an option for patients with refractory PACC.展开更多
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor ...Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16<sup>INK4A</sup> and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.展开更多
AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990. METHODS: Human pancreatic cancer cell line SW1990 an...AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990. METHODS: Human pancreatic cancer cell line SW1990 and PSCs were cultured in vitro . Supernatant fluid of cultured PSCs and SW1990 cells was collected. Expression of GAL-3 in SW1990 cells and PSCs was detected by ELISA, RT-PCR and Western blotting. Proliferation of cultured PSCs and SW1990 cells was measured by 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Infiltration of SW1990 cells was detected by a cell infiltration kit. RESULTS: SW1990 cells expressed GAL-3 and this was up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells stimulated proliferation of PSCs via GAL-3. GAL-3 antibody inhibited SW1990 cell proliferation, while the supernatant fluid of PSCs stimulated proliferation of SW1990 cells through interaction with GAL-3 protein. The supernatant fluid of PSCs enhanced the invasiveness of SW1990 cells through interaction with GAL-3. CONCLUSION: GAL-3 and PSCs were involved in the proliferation and infiltration process of pancreatic cancer cells.展开更多
文摘Pancreatic metastases are rare,with a reported incidence varying from 1.6%to 11%in autopsy studies of patients with advanced malignancy.In clinical series,the frequency of pancreatic metastases ranges from 2%to 5%of all pancreatic malignant tumors.However,the pancreas is an elective site for metastases from carcinoma of the kidney and this peculiarity has been reported by several studies.The epidemiology,clinical presentation,and treatment of pancreatic metastases from renal cell carcinoma are known from singleinstitution case reports and literature reviews.Thereis currently very limited experience with the surgical resection of isolated pancreatic metastasis,and the role of surgery in the management of these patients has not been clearly defined.In fact,for many years pancreatic resections were associated with high rates of morbidity and mortality,and metastatic disease to the pancreas was considered to be a terminal-stage condition.More recently,a significant reduction in the operative risk following major pancreatic surgery has been demonstrated,thus extending the indication for these operations to patients with metastatic disease.
基金Supported by University of Southern DenmarkOdense University Hospital Research Fund
文摘Pancreatic cancer(PC) is the most aggressive type of common cancers, and in 2014, nearly 40000 patients died from the disease in the United States. Pancreatic ductal adenocarcinoma, which accounts for the majority of PC cases, is characterized by an intense stromal desmoplastic reaction surrounding the cancer cells. Cancer-associated fibroblasts(CAFs) are the main effector cells in the desmoplastic reaction, and pancreatic stellate cells are the most important source of CAFs. However, other important components of the PC stroma are inflammatory cells and endothelial cells. The aim of this review is to describe the complex interplay between PC cells and the cellular and noncellular components of the tumour stroma. Published data have indicated that the desmoplastic stroma protects PC cells against chemotherapy and radiation therapy and that it might promote the proliferation and migration of PC cells. However, in animal studies, experimental depletion of the desmoplastic stroma and CAFs has led to more aggressive cancers. Hence, the precise role of the tumour stroma in PC remains to be elucidated. However, it is likely that a contextdependent therapeutic modification, rather than pure depletion, of the PC stroma holds potential for the development of new treatment strategies for PC patients.
基金Grant-in-aid No. 39970344 and No. 30470798the National Nature Science Foundation, China in 1999 and 2004
文摘AIM: To investigate whether KAI1, as a metastasis suppressor gene, is associated with invasive and metastatic ability of pancreatic cancer cells.METHODS: KAI1 gene was transfected into pancreatic cancer cell line MiaPaCa Ⅱ by liposomes selected with G418. Expression of transfected cells was measured by Western blotting, immunofluorescence and immunocytochemistry. Tumor cell invasion and metastatic ability were detected through gelatinase activity and reconstituted basement membrane (Matrigel) assay. pCMV-KAI1 was directly injected into the heterotopic human pancreatic adenocarcinoma successfully established in the groin of BALB/C nude mice, by subcutaneous injection of MiaPaCa Ⅱ pancreatic cancer cells. The statistical analysis between groups was determined by Student's two tailed t test.RESULTS: By Western blotting, MiaPaCa Ⅱ cells transfected by KAI1 gene indicated KAI1 expression at approximately 29.1 kDa. Cytoplasm staining was positive and uniformly spread in transfected cancer cells, using immunohistochemistry and immunofluorescence. The most obvious difference was present after 30 h (MiaPaca Ⅱ 43.6 ± 9.42, pCMV-MiaPaca Ⅱ 44.8 ± 8.56, pCMV-KAI1-MiaPaca Ⅱ 22.0 ± 4.69, P < 0.05). Gelatinolysis revealed a wider and clearer band of gelatinolytic activity in non-transfected than in transfected cells (MiaPaCa Ⅱ cells 30.8 ± 0.57, transfected cells 28.1 ± 0.65, P < 0.05). In vivo tumor growth rates of KAI1 transfectants with KAI1-Lipofectamine 1.22 ± 0.31 in A group were lower than control 4.61 ± 1.98 and pCMV-KAI 11.67 ± 0.81. Analyses of metastases with and without KAI1 transfection in mice were different in liver and lung between controls 1.62 ± 0.39, 0.45 ± 0.09, pCMV-KAI 1.01 ± 0.27, 0.33 ± 0.09 and KAI1-Lipofectamine 0.99 ± 0.21, 0.30 ± 0.09 respectively (P < 0.05).CONCLUSION: High expression of KAI1 gene was found in transfected MiaPaCa Ⅱ human pancreatic cancer cells with lower metastatic ability. KAI1 gene plays an important role in inhibiting metastasis of pancreatic cancer
基金Supported by grants from the National Natural Science Foundation of China No.30171167,No.30901945the Specialized Research Fund for the Doctoral Program of Higher Education No.20130201130009
文摘Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca<sup>2+</sup>) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca<sup>2+</sup> overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca<sup>2+</sup> signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca<sup>2+</sup> elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca<sup>2+</sup> from stores in the intracellular endoplasmic reticulum and/or increased Ca<sup>2+</sup> entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca<sup>2+</sup> by the sarco/endoplasmic reticulum Ca<sup>2+</sup>-activated ATPase and plasma membrane Ca<sup>2+</sup>-ATPase pumps, which contribute to Ca<sup>2+</sup> overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca<sup>2+</sup> signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca<sup>2+</sup> signals in the pathogenesis of pancreatitis.
文摘Pancreatic carcinomas with acinar differentiation are rare,accounting for 1%-2% of adult pancreatic tumors; they include pancreatic acinar cell carcinoma(PACC),pancreatoblastoma,and carcinomas of mixed differentiation. Patients with PACC have a prognosis better than pancreatic ductal adenocarcinomas but worse than pancreatic neuroendocrine tumors. Reports of overall survival range from 18 to 47 mo. A literature review on PACCs included comprehensive genomic profiling and whole exome sequencing on a series of more than 70 patients as well as other diagnostic studies including immunohistochemistry. Surgical resection of PACC is the preferred treatment for localized and resectable tumors. The efficacy of adjuvant treatment is unclear. Metastatic PACCs are generally not curable and treated with systemic chemotherapy. They are moderately responsive to chemotherapy with different regimens showing various degrees of response in case reports/series. Most of these regimens were developed to treat patients with pancreatic ductal adenocarcinomas or colorectal adenocarcinomas. Review of PACC's molecular profiling showed a number of gene alterations such as: SMAD4,BRAF,BRCA2,TP53,RB1,MEN1,JAK-1,BRCA-1,BRCA-2,and DNA mismatch repair abnormalities. PACCs had multiple somatic mutations with some targetable with available drugs. Therefore,molecular profiling of PACC should be an option for patients with refractory PACC.
文摘Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16<sup>INK4A</sup> and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
文摘AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990. METHODS: Human pancreatic cancer cell line SW1990 and PSCs were cultured in vitro . Supernatant fluid of cultured PSCs and SW1990 cells was collected. Expression of GAL-3 in SW1990 cells and PSCs was detected by ELISA, RT-PCR and Western blotting. Proliferation of cultured PSCs and SW1990 cells was measured by 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Infiltration of SW1990 cells was detected by a cell infiltration kit. RESULTS: SW1990 cells expressed GAL-3 and this was up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells stimulated proliferation of PSCs via GAL-3. GAL-3 antibody inhibited SW1990 cell proliferation, while the supernatant fluid of PSCs stimulated proliferation of SW1990 cells through interaction with GAL-3 protein. The supernatant fluid of PSCs enhanced the invasiveness of SW1990 cells through interaction with GAL-3. CONCLUSION: GAL-3 and PSCs were involved in the proliferation and infiltration process of pancreatic cancer cells.