According to the fact that the basic features of a palmprint, includingprincipal lines, wrinkles and ridges, have different resolutions, in this paper we analyzepalmprints using a multi-resolution method and define a ...According to the fact that the basic features of a palmprint, includingprincipal lines, wrinkles and ridges, have different resolutions, in this paper we analyzepalmprints using a multi-resolution method and define a novel palmprint feature, which calledwavelet energy feature (WEF), based on the wavelet transform. WEF can reflect the wavelet energydistribution of the principal lines, wrinkles and ridges in different directions at differentresolutions (scales), thus it can efficiently characterize palmprints. This paper also analyses thediscriminabilities of each level WEF and, according to these discriminabilities, chooses a suitableweight for each level to compute the weighted city block distance for recognition. The experimentalresults show that the order of the discriminabilities of each level WEF, from strong to weak, is the4th, 3rd, 5th, 2nd and 1st level. It also shows that WEF is robust to some extent in rotation andtranslation of the images. Accuracies of 99.24% and 99.45% have been obtained in palmprintverification and palmprint identification, respectively. These results demonstrate the power of theproposed approach.展开更多
文摘According to the fact that the basic features of a palmprint, includingprincipal lines, wrinkles and ridges, have different resolutions, in this paper we analyzepalmprints using a multi-resolution method and define a novel palmprint feature, which calledwavelet energy feature (WEF), based on the wavelet transform. WEF can reflect the wavelet energydistribution of the principal lines, wrinkles and ridges in different directions at differentresolutions (scales), thus it can efficiently characterize palmprints. This paper also analyses thediscriminabilities of each level WEF and, according to these discriminabilities, chooses a suitableweight for each level to compute the weighted city block distance for recognition. The experimentalresults show that the order of the discriminabilities of each level WEF, from strong to weak, is the4th, 3rd, 5th, 2nd and 1st level. It also shows that WEF is robust to some extent in rotation andtranslation of the images. Accuracies of 99.24% and 99.45% have been obtained in palmprintverification and palmprint identification, respectively. These results demonstrate the power of theproposed approach.
基金山东省自然科学基金(the Natural Science Foundation of Shandong Province of China under Grant No.G2004Z01) 教育部留学回国人员科研启动基金(The Project- sponsored by SRF for ROCS+1 种基金 SEM) 山东大学信息科学与工程学院科研启动基金。