Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for e...Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for environmental protection and climate change adaption, the spatio-temporal changes of rice cultivation in NEC are not clear. In this study, we conducted spatio-temporal analyses of NEC's major rice production region, Heilongjiang Province, by using satellite-derived rice cultivation maps. We found that the total cultivated area of rice in Heilongjiang Province increased largely from 1993 to 2011 and it expanded spatially to the northern and eastern part of the Sanjiang Plain. The results also showed that rice cultivation areas experienced a larger increase in the region managed by the Reclamation Management Bureau (RMB) than that managed by the local provincial government. Rice cultivation changes were closely related with those geographic factors over the investigated periods, represented by the geomorphic (slope), climatic (accumulated temperature), and hydrological (watershed) variables. These findings provide clear evidence that crop cultivation in NEC has been modified to better cope with the global change.展开更多
We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods. The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultiv...We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods. The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultivation (MC, control) and bare dry cultivation (DC) with three P levels, low (LP, 45 kg/hm2), normal (NP, 90 kg/hm2) and high (HI:), 135 kg/hm2). As P level increased, grain yields of both upland and paddy rice increased under DC. There were no significant differences in grain yields between HP and NP for either rice, although upland rice slightly increased and paddy rice slightly decreased in grain yield. Under DC at LP, Zhonghan 3 showed a higher head milled rice rate and better appearance, cooking and eating qualities than at HP or NP. Yangfujing 8 was similar to Zhonghan 3 except that Yangfujing 8 had better appearance quality at NP. Under MC, Zhonghan 3 had a higher head milled rice rate at LP and better cooking and eating qualities at NP. Yangfujing 8 was similar to Zhonghan 3 except in appearance quality. DC improved head milled rice rate and appearance quality of both upland and paddy rice, and cooking and nutrient qualities of paddy rice. Compared with paddy rice, upland rice had better processing, nutrient and eating qualities. The results suggest that upland and paddy rice respond differently to cultivation method and phosphorus level.展开更多
基金financially supported by the Opening Foundation of the Key Laboratory of Agricultural Information Technology,Ministry of Agriculture,China (2016009)the National Natural Science Foundation of China (41501111 and 41271112)
文摘Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for environmental protection and climate change adaption, the spatio-temporal changes of rice cultivation in NEC are not clear. In this study, we conducted spatio-temporal analyses of NEC's major rice production region, Heilongjiang Province, by using satellite-derived rice cultivation maps. We found that the total cultivated area of rice in Heilongjiang Province increased largely from 1993 to 2011 and it expanded spatially to the northern and eastern part of the Sanjiang Plain. The results also showed that rice cultivation areas experienced a larger increase in the region managed by the Reclamation Management Bureau (RMB) than that managed by the local provincial government. Rice cultivation changes were closely related with those geographic factors over the investigated periods, represented by the geomorphic (slope), climatic (accumulated temperature), and hydrological (watershed) variables. These findings provide clear evidence that crop cultivation in NEC has been modified to better cope with the global change.
基金the National Natural Science Foundation of Major International Cooperation Project (Grant No. 31061140457)the National Research Projects (Grant No. 2006BAD02A13-3-2)the Natural Sciences Foundation of JiangsuProvince,China (Grant No. BK2009005)
文摘We investigated how upland and paddy japonica rice responded to phosphorous (P) fertilizer under two cultivation methods. The upland rice Zhonghan 3 and the paddy rice Yangfujing 8 were both grown under moist cultivation (MC, control) and bare dry cultivation (DC) with three P levels, low (LP, 45 kg/hm2), normal (NP, 90 kg/hm2) and high (HI:), 135 kg/hm2). As P level increased, grain yields of both upland and paddy rice increased under DC. There were no significant differences in grain yields between HP and NP for either rice, although upland rice slightly increased and paddy rice slightly decreased in grain yield. Under DC at LP, Zhonghan 3 showed a higher head milled rice rate and better appearance, cooking and eating qualities than at HP or NP. Yangfujing 8 was similar to Zhonghan 3 except that Yangfujing 8 had better appearance quality at NP. Under MC, Zhonghan 3 had a higher head milled rice rate at LP and better cooking and eating qualities at NP. Yangfujing 8 was similar to Zhonghan 3 except in appearance quality. DC improved head milled rice rate and appearance quality of both upland and paddy rice, and cooking and nutrient qualities of paddy rice. Compared with paddy rice, upland rice had better processing, nutrient and eating qualities. The results suggest that upland and paddy rice respond differently to cultivation method and phosphorus level.