Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of C...Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of CEC of zeolites. We determined CEC of Linde-type A and Na-P1 type zeolites at various pH (4 to 10) with a simple method, where Na+-saturated zeolites were prepared, and then various amounts of HCl were added. CEC was simply calculated by subtracting the amount of Na+ in the final supernatant from the content of Na+ of the Na+-saturated zeolites. CEC of the zeolites decreased with decreasing pH and with decreasing Na+ concentration of the final supernatant. The concentration of Na+ of the supernatant, CEC of the zeolites began to decrease at weakly alkaline or neutral pH, and that of the Linde-type A zeolite became about half at pH around 6. When CEC was plotted against pH-pNa;where pNa is negative logarithm of the activity of Na+;CEC of each zeolite was expressed by a curve. It indicates that the CEC or the amount of Na+ retention is univocally determined by the ratio of activities of Na+ and proton.展开更多
The adsorption of Pb on zeolites A4, X, Y and mordenite was studied at various initial pH with the purpose of assessing the pH dependence of Pb adsorption. The adsorption was conducted using 0 - 0.6 mM Pb(NO3)2 in the...The adsorption of Pb on zeolites A4, X, Y and mordenite was studied at various initial pH with the purpose of assessing the pH dependence of Pb adsorption. The adsorption was conducted using 0 - 0.6 mM Pb(NO3)2 in the presence of 100 mM NH4NO3 and pH adjustment done using HNO3. The coexisting NH4NO3 served as a representative of other cations available in nature. The study was conducted at initial solution pH ranging from 3 - 5. Adsorption results were analyzed using Langmuir isotherm analysis. Adsorption was noted to be dependent on pH with increasing adsorption as pH increased from 3 - 5 for zeolites A4, X and Y. The adsorption of Pb on mordenite on the other hand did not show any dependence on pH since it was almost constant within the studied pH range. The adsorptive capacities were 2500, 2000, 588 and 179 mmol·kg-1 for A4, X, Y and mordenite, respectively. The results of this study can be used in designing or planning for the clean-up of polluted water using adsorption techniques. An important attribute of these findings was that the samples studied were shown to have the capacity of removing even very low concentration of Pb, a property which is hardly achievable by most adsorbents.展开更多
We studied the kinetic characterizations of the Trifolium pratense seedlings copper-containing amine oxidase(TPAO) by using various amine-containing substrates.The catalyzing rate for all of amine-containing substrate...We studied the kinetic characterizations of the Trifolium pratense seedlings copper-containing amine oxidase(TPAO) by using various amine-containing substrates.The catalyzing rate for all of amine-containing substrates can be ordered as diamines > polyamines > aromatic monoamines,and it shows an apparent trend in each category of substrates such as the longer the carbon chain,the lower the V_(max) is,so does the V_(max)/K_m values but is opposite for the K_m value of TPAO.The distinct differences between the kinetic parameters for different amine-containing substrates indicated that the rate-determining step of the catalytic reaction strongly depends on the substrate's chemical structure.It is concluded that both pH and ionic strength can affect the catalytic activity of TPAO via influencing the coulomb interaction-mediated enzyme-substrate docking processes,which can be attributed to the potential of charged groups from both substrates and the activity sites of TPAO by the regulation of ionic strength.展开更多
Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source a...Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.展开更多
The goal of this study was to determine whether mutation of the Mn-binding site of wild-type recombinant Phlebia radiata manganese peroxidase 3 affected the pH-dependence kinetic parameters. pH range investigated was ...The goal of this study was to determine whether mutation of the Mn-binding site of wild-type recombinant Phlebia radiata manganese peroxidase 3 affected the pH-dependence kinetic parameters. pH range investigated was 2.5 – 12.0. The catalytic efficiency of the mutant enzymes at high and low pH in comparison to the wild-type was investigated using standard rPr-MnP3 protocol. Wild-type recombinant Phlebia radiata MnP3 enzyme showed optimal activity with Mn (II) as substrate at pH 5.0 and remained moderately active (approximately 40%) in the pH range of 6.0 - 9.0. The rPr-MnP3 mutants’ maximum activity ranged between 5.5 and 8.0. Wild-type and mutants rPr-MnP3 enzymes exhibited a similar pH profile with optimum pH of 3.0 for ABTS oxidation. Mutation has severely decreased the catalytic efficiency for Mn (II) oxidation at pH 5.0. The rPr-MnP3 enzymes showed enhanced affinity for Mn (II) at alkaline pH and a more alkaline range for catalysis than ever reported for any Manganese Peroxidase. This study reveals that at higher pH, rPr-MnP3 can function with alternative ligands in the Mn (II) site and does not have an absolutely obligate requirement for an all carboxylate ligand set. These results further strongly confirm that Mn<sup>2+</sup> binding site is the only productive catalytic site for Mn (II) oxidation.展开更多
This investigation is aimed at understanding the specific role of pH and calcium ions on the activity and stability of wild-type recombinant Phlebia radiata manganese peroxidase 3 (rPr-MnP3). The pH-dependent cycle of...This investigation is aimed at understanding the specific role of pH and calcium ions on the activity and stability of wild-type recombinant Phlebia radiata manganese peroxidase 3 (rPr-MnP3). The pH-dependent cycle of reactions for rPr-MnP3 was evaluated by investigating time-dependent changes in the activity and electronic absorption spectrum of rPr-MnP3.The rPr-MnP3 had maximum efficacy (kcat/Km) for Mn (II) oxidation at pH 5.0 and 3.0 for oxidation of ABTS. Raising the pH of a solution of resting rPr-MnP3 from pH 6.7 (form XH) to pH 8.6 (form X<sup>−</sup>), a rapid alkaline transition occurs. Leaving the X<sup>−</sup> form of the enzyme at pH 8.6, it slowly becomes converted to a third form of the enzyme Y<sup>−</sup>, which returned to the original XH form of the enzyme at pH 6.7. Recovery of form XH from form Y<sup>−</sup> occurred through an intermediate Z form. The pH inactivation of rPr-MnP3 followed first-order kinetics. The rate of formation of XH from Z is pH-dependent and biphasic in nature, with measured rate constants (k) = 0.25 min<sup>−1</sup>, and half-life (T<sub>1/2</sub>) = 2.8 min. The pH-dependent properties observed may be indicative of a greater degree of conformational flexibility at rPr-MnP3 active site due to disruption of the haem-linked hydrogen-bonding network in the distal haem pocket. Calcium ions were observed to significantly stabilised the enzyme’s spectral features and reduce the loss of activity during the alkaline pH transition. Calcium ions enhance the recovery of the initial activity but cannot prevent the final time-dependent irreversible denaturation and aggregation.展开更多
文摘Cation exchange capacity (CEC) is an important characteristic of zeolites, especially when they are used as adsorbents in the aqueous system. However, no international standard method exists for the determination of CEC of zeolites. We determined CEC of Linde-type A and Na-P1 type zeolites at various pH (4 to 10) with a simple method, where Na+-saturated zeolites were prepared, and then various amounts of HCl were added. CEC was simply calculated by subtracting the amount of Na+ in the final supernatant from the content of Na+ of the Na+-saturated zeolites. CEC of the zeolites decreased with decreasing pH and with decreasing Na+ concentration of the final supernatant. The concentration of Na+ of the supernatant, CEC of the zeolites began to decrease at weakly alkaline or neutral pH, and that of the Linde-type A zeolite became about half at pH around 6. When CEC was plotted against pH-pNa;where pNa is negative logarithm of the activity of Na+;CEC of each zeolite was expressed by a curve. It indicates that the CEC or the amount of Na+ retention is univocally determined by the ratio of activities of Na+ and proton.
文摘The adsorption of Pb on zeolites A4, X, Y and mordenite was studied at various initial pH with the purpose of assessing the pH dependence of Pb adsorption. The adsorption was conducted using 0 - 0.6 mM Pb(NO3)2 in the presence of 100 mM NH4NO3 and pH adjustment done using HNO3. The coexisting NH4NO3 served as a representative of other cations available in nature. The study was conducted at initial solution pH ranging from 3 - 5. Adsorption results were analyzed using Langmuir isotherm analysis. Adsorption was noted to be dependent on pH with increasing adsorption as pH increased from 3 - 5 for zeolites A4, X and Y. The adsorption of Pb on mordenite on the other hand did not show any dependence on pH since it was almost constant within the studied pH range. The adsorptive capacities were 2500, 2000, 588 and 179 mmol·kg-1 for A4, X, Y and mordenite, respectively. The results of this study can be used in designing or planning for the clean-up of polluted water using adsorption techniques. An important attribute of these findings was that the samples studied were shown to have the capacity of removing even very low concentration of Pb, a property which is hardly achievable by most adsorbents.
基金supported by the Department of Education of Inner Mongolia and Inner Mongolia Natural Science Foundation of China for Basic Research(No.NJZY13054)the National Natural Science Foundation of China(Nos.31360214,21171086 and 81160213)+3 种基金the Inner Mongolia Autonomous Region Science and Technology Department(No.211-202077)the Inner Mongolia Grassland Talent(No.108-108038)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2013MS1121 and 2015MS0806)the Inner Mongolia Agricultural University(Nos.109-108040,211-109003 and 211-206038)
文摘We studied the kinetic characterizations of the Trifolium pratense seedlings copper-containing amine oxidase(TPAO) by using various amine-containing substrates.The catalyzing rate for all of amine-containing substrates can be ordered as diamines > polyamines > aromatic monoamines,and it shows an apparent trend in each category of substrates such as the longer the carbon chain,the lower the V_(max) is,so does the V_(max)/K_m values but is opposite for the K_m value of TPAO.The distinct differences between the kinetic parameters for different amine-containing substrates indicated that the rate-determining step of the catalytic reaction strongly depends on the substrate's chemical structure.It is concluded that both pH and ionic strength can affect the catalytic activity of TPAO via influencing the coulomb interaction-mediated enzyme-substrate docking processes,which can be attributed to the potential of charged groups from both substrates and the activity sites of TPAO by the regulation of ionic strength.
基金supported by the National Key Research and Development Program of China(2016YFC0102700)National Natural Science Foundation of China(21171117,21271181,21473240,and 81270209)+1 种基金Medical-Engineering Crossover Fund of Shanghai Jiao Tong University(YG2015MS51 and YG2014MS66)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
文摘The goal of this study was to determine whether mutation of the Mn-binding site of wild-type recombinant Phlebia radiata manganese peroxidase 3 affected the pH-dependence kinetic parameters. pH range investigated was 2.5 – 12.0. The catalytic efficiency of the mutant enzymes at high and low pH in comparison to the wild-type was investigated using standard rPr-MnP3 protocol. Wild-type recombinant Phlebia radiata MnP3 enzyme showed optimal activity with Mn (II) as substrate at pH 5.0 and remained moderately active (approximately 40%) in the pH range of 6.0 - 9.0. The rPr-MnP3 mutants’ maximum activity ranged between 5.5 and 8.0. Wild-type and mutants rPr-MnP3 enzymes exhibited a similar pH profile with optimum pH of 3.0 for ABTS oxidation. Mutation has severely decreased the catalytic efficiency for Mn (II) oxidation at pH 5.0. The rPr-MnP3 enzymes showed enhanced affinity for Mn (II) at alkaline pH and a more alkaline range for catalysis than ever reported for any Manganese Peroxidase. This study reveals that at higher pH, rPr-MnP3 can function with alternative ligands in the Mn (II) site and does not have an absolutely obligate requirement for an all carboxylate ligand set. These results further strongly confirm that Mn<sup>2+</sup> binding site is the only productive catalytic site for Mn (II) oxidation.
文摘This investigation is aimed at understanding the specific role of pH and calcium ions on the activity and stability of wild-type recombinant Phlebia radiata manganese peroxidase 3 (rPr-MnP3). The pH-dependent cycle of reactions for rPr-MnP3 was evaluated by investigating time-dependent changes in the activity and electronic absorption spectrum of rPr-MnP3.The rPr-MnP3 had maximum efficacy (kcat/Km) for Mn (II) oxidation at pH 5.0 and 3.0 for oxidation of ABTS. Raising the pH of a solution of resting rPr-MnP3 from pH 6.7 (form XH) to pH 8.6 (form X<sup>−</sup>), a rapid alkaline transition occurs. Leaving the X<sup>−</sup> form of the enzyme at pH 8.6, it slowly becomes converted to a third form of the enzyme Y<sup>−</sup>, which returned to the original XH form of the enzyme at pH 6.7. Recovery of form XH from form Y<sup>−</sup> occurred through an intermediate Z form. The pH inactivation of rPr-MnP3 followed first-order kinetics. The rate of formation of XH from Z is pH-dependent and biphasic in nature, with measured rate constants (k) = 0.25 min<sup>−1</sup>, and half-life (T<sub>1/2</sub>) = 2.8 min. The pH-dependent properties observed may be indicative of a greater degree of conformational flexibility at rPr-MnP3 active site due to disruption of the haem-linked hydrogen-bonding network in the distal haem pocket. Calcium ions were observed to significantly stabilised the enzyme’s spectral features and reduce the loss of activity during the alkaline pH transition. Calcium ions enhance the recovery of the initial activity but cannot prevent the final time-dependent irreversible denaturation and aggregation.