A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-suppl...A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.展开更多
A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is p...A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-groups (non-PRN-group all of whose proper subgroups are PRN-groups). At the end of the paper, we also classify the finite group G, all of whose second maximal subgroups are PRN-groups.展开更多
We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and e...We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.展开更多
Let A be a subgroup of a group G and X a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we try to use the ...Let A be a subgroup of a group G and X a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we try to use the X-semipermutability of some subgroups to characterize the structure of finite groups.展开更多
文摘A subgroup H of a group G is called F-z-supplemented in G if there exists a subgroup K of G, such that G = HK and H∩K≤ Z∞F(G), where Z∞F(G) is the F-hypercenter of G. We obtain some results about the F-z-supplemented subgroups and use them to determine the structure of some groups.
基金Supported by Natural Science Foundation of China (Grant No. 10871032), Graduate Student Research and Innovation Program of Jiangsu Province (Grant No. CX10B-028Z)
文摘A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-groups (non-PRN-group all of whose proper subgroups are PRN-groups). At the end of the paper, we also classify the finite group G, all of whose second maximal subgroups are PRN-groups.
基金This work was supported by a research grant of Shanxi Province for the first author and partially supported by a fund of UGC(HK) for the second author (Grant No. 2160126, 1999/2000).
文摘We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.
基金Supported by the National Natural Science Foundation of China (Grant Nos1077117210771180)
文摘Let A be a subgroup of a group G and X a nonempty subset of G. A is said to be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with every subgroup of T. In this paper, we try to use the X-semipermutability of some subgroups to characterize the structure of finite groups.