In this paper we classify regular p-groups with type invariants (e, 1, 1, 1) for e ≥ 2 and (1, 1, 1, 1, 1). As a by-product, we give a new approach to the classification of groups of order p5, p ≥ 5 a prime.
Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian grou...Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian group.From the definition,we know every finite non-abelian p-group can be regarded as an A_(t)-group for some positive integer t.A_(1)-groups and A_(2)-groups have been classified.Classifying A_(3)-groups is an old problem.In this paper,some general properties about A_(t)-groups are given.A_(3)-groups are completely classified up to isomorphism.Moreover,we determine the Frattini subgroup,the derived subgroup and the center of every A_(3)-group,and give the number of A_(1)-subgroups and the triple(μ_(0),μ_(1),μ_(2))of every A_(3)-group,whereμi denotes the number of A_(i)-subgroups of index p of A_(3)-groups.展开更多
Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p &g...Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.展开更多
We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly ...We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly a problem proposed by Berkovich.展开更多
In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in w...In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.展开更多
In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {...In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 .展开更多
Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an ...Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.展开更多
Let F be a number field and p be a prime. In the successive approximation theorem, we prove that, for each integer n ≥ 1, finitely many candidates for the Galois group of the nth stage of the p-class tower over F are...Let F be a number field and p be a prime. In the successive approximation theorem, we prove that, for each integer n ≥ 1, finitely many candidates for the Galois group of the nth stage of the p-class tower over F are determined by abelian type invariants of p-class groups C1pE of unramified extensions E/F with degree [E : F] = pn-1. Illustrated by the most extensive numerical results available currently, the transfer kernels (TE, F) of the p-class extensions TE, F : C1pF → C1pE from F to unramified cyclic degree-p extensions E/F are shown to be capable of narrowing down the number of contestants significantly. By determining the isomorphism type of the maximal subgroups S G of all 3-groups G with coclass cc(G) = 1, and establishing a general theorem on the connection between the p-class towers of a number field F and of an unramified abelian p-extension E/F, we are able to provide a theoretical proof of the realization of certain 3-groups S with maximal class by 3-tower groups of dihedral fields E with degree 6, which could not be realized up to now.展开更多
A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , ...Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , resp. (3,3), form periodic sequences in the descendant tree of the elementary Abelian root , resp. . The particular vertex of the periodic sequence which occurs as the p-class tower group G of an assigned field K is determined uniquely by the p-class number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously to K. Consequently, the hard problem of identifying the p-class tower group G is reduced to an easy computation of low degree arithmetical invariants.展开更多
Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use p^M(G) and p^m(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G, respec...Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use p^M(G) and p^m(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G, respectively. In this paper, we classify groups G such that M(G) 〈 2m(G) ^- 1. As a by-product, we also classify p-groups whose orders of non-normal subgroups are p^k and p^k+1.展开更多
For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.Thi...For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.This solves a problem proposed by Berkovich.展开更多
Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of or...Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of order p^3. In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.展开更多
Let G be a group of order pn, p a prime. For 0 m n, sm(G) denotes the number of subgroups of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan had ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(...Let G be a group of order pn, p a prime. For 0 m n, sm(G) denotes the number of subgroups of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan had ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1+p, 1+p+p2 or 1+p+2p2(mod p3). The conjecture has a negative answer. In this paper, we further investigate the conjecture and propose two new conjectures.展开更多
基金supported by the National Natural Science Founda tion of China(Grant Nos.10371003&10471085)Natural Science Foundation of Beijing 1052005)+2 种基金Natural Science Foundation of Shanxi Province(Grant No.20051007)Key Project of Ministry of Education(Grant No.02023)The Returned Abroad-Student Found of Shanxi Province(Grant No.[2004]7).
文摘In this paper we classify regular p-groups with type invariants (e, 1, 1, 1) for e ≥ 2 and (1, 1, 1, 1, 1). As a by-product, we give a new approach to the classification of groups of order p5, p ≥ 5 a prime.
基金This work was supported by NSFC(Nos.11371232,11471198)by NSF of Shanxi Province(No.2013011001).
文摘Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian group.From the definition,we know every finite non-abelian p-group can be regarded as an A_(t)-group for some positive integer t.A_(1)-groups and A_(2)-groups have been classified.Classifying A_(3)-groups is an old problem.In this paper,some general properties about A_(t)-groups are given.A_(3)-groups are completely classified up to isomorphism.Moreover,we determine the Frattini subgroup,the derived subgroup and the center of every A_(3)-group,and give the number of A_(1)-subgroups and the triple(μ_(0),μ_(1),μ_(2))of every A_(3)-group,whereμi denotes the number of A_(i)-subgroups of index p of A_(3)-groups.
基金supported by National Natural Science Foundation of China (Grant No. 10671114)the Natural Science Foundation of Shanxi Province (Grant No. 2008012001)the Returned Abroad-Student Fund of Shanxi Province (Grant No. [2007]13-56)
文摘Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.
基金supported by National Natural Science Foundation of China (Grant No. 11371232)Natural Science Foundation of Shanxi Province (Grant Nos. 2012011001-3 and 2013011001-1)
文摘We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly a problem proposed by Berkovich.
基金supported by the National Natural Science Foundation of China(No.10671114)the ShanxiProvincial Natural Science Foundation of China(No.2008012001)the Returned Abroad-StudentFund of Shanxi Province(No.[2007]13-56)
文摘In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.
基金supported by National Natural Science Foundation of China (Grant No.10671058)Doctor Foundation of Henan University of Technology (Grant No. 2009BS029)
文摘In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 .
文摘Let p be a prime. For any finite p-group G, the deep transfers T H,G ' : H / H ' → G ' / G " from the maximal subgroups H of index (G:H) = p in G to the derived subgroup G ' are introduced as an innovative tool for identifying G uniquely by means of the family of kernels ùd(G) =(ker(T H,G ')) (G: H) = p. For all finite 3-groups G of coclass cc(G) = 1, the family ùd(G) is determined explicitly. The results are applied to the Galois groups G =Gal(F3 (∞)/ F) of the Hilbert 3-class towers of all real quadratic fields F = Q(√d) with fundamental discriminants d > 1, 3-class group Cl3(F) □ C3 × C3, and total 3-principalization in each of their four unramified cyclic cubic extensions E/F. A systematic statistical evaluation is given for the complete range 1 d 7, and a few exceptional cases are pointed out for 1 d 8.
文摘Let F be a number field and p be a prime. In the successive approximation theorem, we prove that, for each integer n ≥ 1, finitely many candidates for the Galois group of the nth stage of the p-class tower over F are determined by abelian type invariants of p-class groups C1pE of unramified extensions E/F with degree [E : F] = pn-1. Illustrated by the most extensive numerical results available currently, the transfer kernels (TE, F) of the p-class extensions TE, F : C1pF → C1pE from F to unramified cyclic degree-p extensions E/F are shown to be capable of narrowing down the number of contestants significantly. By determining the isomorphism type of the maximal subgroups S G of all 3-groups G with coclass cc(G) = 1, and establishing a general theorem on the connection between the p-class towers of a number field F and of an unramified abelian p-extension E/F, we are able to provide a theoretical proof of the realization of certain 3-groups S with maximal class by 3-tower groups of dihedral fields E with degree 6, which could not be realized up to now.
基金the Natural Science Foundation of China(10161001)the Natural Science Foundation of Guangxi of China+1 种基金the National Natural Science Foundation of Shanghai Education CommitteeSpecial Funds for Major Specialities of Shanghai Education Committee
文摘A subgroup H of a finite group G is called a TI-subgroup if H ∩ H^x = 1 or H for all x ∈ G. In this paper, a complete classification for finite p-groups, in which all abelian subgroups are TI-subgroups, is given.
文摘Recent examples of periodic bifurcations in descendant trees of finite p-groups with ?are used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- class group of type (2,2,2) , resp. (3,3), form periodic sequences in the descendant tree of the elementary Abelian root , resp. . The particular vertex of the periodic sequence which occurs as the p-class tower group G of an assigned field K is determined uniquely by the p-class number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously to K. Consequently, the hard problem of identifying the p-class tower group G is reduced to an easy computation of low degree arithmetical invariants.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11471198, 11771258).
文摘Suppose that G is a finite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use p^M(G) and p^m(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G, respectively. In this paper, we classify groups G such that M(G) 〈 2m(G) ^- 1. As a by-product, we also classify p-groups whose orders of non-normal subgroups are p^k and p^k+1.
基金supported by National Natural Science Foundation of China(Grant Nos.11771258 and 11471198)。
文摘For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.This solves a problem proposed by Berkovich.
基金Supported by National Natural Science Foundation of China(Grant Nos.11771258 and 11471198)
文摘Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p^3. Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonme tacyclic of order p^3. In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.
基金supported by the National Natural Science Foundation of China(Nos.11371232,11101252)the Shanxi Provincial Natural Science Foundation of China(No.2013011001)the Fundamental Research Funds for the Central Universities(No.BUPT2013RC0901)
文摘The groups as mentioned in the title are classified up to isomorphism. This is an answer to a question proposed by Berkovich and Janko.
基金supported by National Natural Science Foundation of China (Grant No.11071150)Natural Science Foundation of Shanxi Province (Grant No. 2008012001)The Returned Abroad-student Foundation of Shanxi Province (Grant No. [2007]13-56)
文摘Let G be a group of order pn, p a prime. For 0 m n, sm(G) denotes the number of subgroups of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan had ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1+p, 1+p+p2 or 1+p+2p2(mod p3). The conjecture has a negative answer. In this paper, we further investigate the conjecture and propose two new conjectures.