Among the geotechnical in situ tests,the dynamic penetration test(DPT)is commonly used around the world.However,DPT remains a rough technique and provides only one failure parameter:blow count or cone resistance.This ...Among the geotechnical in situ tests,the dynamic penetration test(DPT)is commonly used around the world.However,DPT remains a rough technique and provides only one failure parameter:blow count or cone resistance.This paper presents an improvement of the dynamic cone penetration test(DCPT)for soil characterisation based on the wave equation theory.Implemented on an instrumented lightweight dynamic penetrometer driving with variable energy,the main process of the test involves the separation and reconstruction of the waves propagating in the rods after each blow and provides a dynamic cone load-penetration(DCLT)curve.An analytical methodology is used to analyse this curve and to estimate additional strength and deformation parameters of the soil:dynamic and pseudo-static cone resistances,deformation modulus and wave velocity.Tests carried out in the laboratory on different specimens(wood,concrete,sand and clay)in an experimental sand pit and in the field demonstrated that the resulting DCLT curve is reproducible,sensitive and reliable to the test conditions(rod length,driving energy,etc.)as well as to the soil properties(nature,density,etc.).Obtained results also showed that the method based on shock polar analysis makes it possible to evaluate mechanical impedance and wave velocity of soils,as demonstrated by the comparisons with cone penetration test(CPT)and shear wave velocity measurements made in the field.This technique improves the method and interpretation of DPT and provides reliable data for shallow foundation design.展开更多
We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm...We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm, which is based on the Least-squares FEM in combination with a scaling transformation, presents a good approximation of a diffusion operator in diffusive regimes and guarantees an accurate discrete solution. The numerical experiments in 2D and 3D case are given, and the numerical results show that this algorithm is correct and efficient.展开更多
文摘Among the geotechnical in situ tests,the dynamic penetration test(DPT)is commonly used around the world.However,DPT remains a rough technique and provides only one failure parameter:blow count or cone resistance.This paper presents an improvement of the dynamic cone penetration test(DCPT)for soil characterisation based on the wave equation theory.Implemented on an instrumented lightweight dynamic penetrometer driving with variable energy,the main process of the test involves the separation and reconstruction of the waves propagating in the rods after each blow and provides a dynamic cone load-penetration(DCLT)curve.An analytical methodology is used to analyse this curve and to estimate additional strength and deformation parameters of the soil:dynamic and pseudo-static cone resistances,deformation modulus and wave velocity.Tests carried out in the laboratory on different specimens(wood,concrete,sand and clay)in an experimental sand pit and in the field demonstrated that the resulting DCLT curve is reproducible,sensitive and reliable to the test conditions(rod length,driving energy,etc.)as well as to the soil properties(nature,density,etc.).Obtained results also showed that the method based on shock polar analysis makes it possible to evaluate mechanical impedance and wave velocity of soils,as demonstrated by the comparisons with cone penetration test(CPT)and shear wave velocity measurements made in the field.This technique improves the method and interpretation of DPT and provides reliable data for shallow foundation design.
基金This work was supported by National Natural Science Foundation of China(No.10371096)
文摘We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm, which is based on the Least-squares FEM in combination with a scaling transformation, presents a good approximation of a diffusion operator in diffusive regimes and guarantees an accurate discrete solution. The numerical experiments in 2D and 3D case are given, and the numerical results show that this algorithm is correct and efficient.