We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not ...We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not only with respect to the standard real topology on the field of rational numbers Q but also with respect to an arbitrary topology on Q. The case of p-adic (and more general non-Archimedean) topologies is the most important. Our frequency theory of Probability is a fruitful extension of the frequency theory of R. von Mises[18]. It's well known that the axiomatic theory of Kolmogorov uses the frequency theory as one of the foundations. And a new general frequency theory can be considered as the base for the general axiomatic theory of probability (Kolmogorov's theory is a particular case of this theory which corresponds to the real topology of the statistical stabilization on Q). The situation in the theory of probability becomes similar to that in modern geometry. The Kolmogorov axiomatics (as the Euclidean) is only one of the possibilities, and we have generated a great number of different non-Kolmogorov theories of probability.The applications to p-adic quantum mechanics and field theory are considered.展开更多
Ⅰ. INTRODUCTION K. Mahler, Th. Schneider, P. Bundschuh, J. Browkin and Wang Lianxiang considered the question of p-adic number which is approximated by rational numbers and tbe question of the algebraic independence ...Ⅰ. INTRODUCTION K. Mahler, Th. Schneider, P. Bundschuh, J. Browkin and Wang Lianxiang considered the question of p-adic number which is approximated by rational numbers and tbe question of the algebraic independence and transcendence in various ways. However, there are only a few results on the simultaneous approxi-展开更多
A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler ...A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.展开更多
A novel permutation-dependent Baire distance is introduced for multi-channel data. The optimal permutation is given by minimizing the sum of these pairwise distances. It is shown that for most practical cases the mini...A novel permutation-dependent Baire distance is introduced for multi-channel data. The optimal permutation is given by minimizing the sum of these pairwise distances. It is shown that for most practical cases the minimum is attained by a new gradient descent algorithm introduced in this article. It is of biquadratic time complexity: Both quadratic in number of channels and in size of data. The optimal permutation allows us to introduce a novel Baire-distance kernel Support Vector Machine (SVM). Applied to benchmark hyperspectral remote sensing data, this new SVM produces results which are comparable with the classical linear SVM, but with higher kernel target alignment.展开更多
Recall that in [1] it is obtained the criteria solvability of the Equation in , and for P>3. Since any p-adic number x has a unique form ,?where and in [1] it is also shown that from the criteria in it follows the ...Recall that in [1] it is obtained the criteria solvability of the Equation in , and for P>3. Since any p-adic number x has a unique form ,?where and in [1] it is also shown that from the criteria in it follows the criteria in and . In this paper we provide the algorithm of finding the solutions of the Equation in with coefficients from .展开更多
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
文摘We propose a new theory of probability based on the general principle of the statistical stabilization of relative frequencies. According to this principle it is possible to consider the statistical stabilization not only with respect to the standard real topology on the field of rational numbers Q but also with respect to an arbitrary topology on Q. The case of p-adic (and more general non-Archimedean) topologies is the most important. Our frequency theory of Probability is a fruitful extension of the frequency theory of R. von Mises[18]. It's well known that the axiomatic theory of Kolmogorov uses the frequency theory as one of the foundations. And a new general frequency theory can be considered as the base for the general axiomatic theory of probability (Kolmogorov's theory is a particular case of this theory which corresponds to the real topology of the statistical stabilization on Q). The situation in the theory of probability becomes similar to that in modern geometry. The Kolmogorov axiomatics (as the Euclidean) is only one of the possibilities, and we have generated a great number of different non-Kolmogorov theories of probability.The applications to p-adic quantum mechanics and field theory are considered.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTION K. Mahler, Th. Schneider, P. Bundschuh, J. Browkin and Wang Lianxiang considered the question of p-adic number which is approximated by rational numbers and tbe question of the algebraic independence and transcendence in various ways. However, there are only a few results on the simultaneous approxi-
文摘A canonical p-adic Frobenius lift is defined in the context of p-adic numbers, viewed as deformations of the corresponding finite field. Applications to p-adic periods are considered, including to the classical Euler gamma and beta functions and their p-adic analogues, from a cohomological point of view. Connections between various methods for computing scattering amplitudes are related to the moduli space problem and period domains.
文摘A novel permutation-dependent Baire distance is introduced for multi-channel data. The optimal permutation is given by minimizing the sum of these pairwise distances. It is shown that for most practical cases the minimum is attained by a new gradient descent algorithm introduced in this article. It is of biquadratic time complexity: Both quadratic in number of channels and in size of data. The optimal permutation allows us to introduce a novel Baire-distance kernel Support Vector Machine (SVM). Applied to benchmark hyperspectral remote sensing data, this new SVM produces results which are comparable with the classical linear SVM, but with higher kernel target alignment.
文摘Recall that in [1] it is obtained the criteria solvability of the Equation in , and for P>3. Since any p-adic number x has a unique form ,?where and in [1] it is also shown that from the criteria in it follows the criteria in and . In this paper we provide the algorithm of finding the solutions of the Equation in with coefficients from .