This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The...This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core-shell n anorod array is formed by coati ng an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core-shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p-n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electr ons and holes out of the TiO2 nano rods. In additi on, the MOF coati ng sign ificantly improves the efficie ncy of charge in jecti on at the photoanode/electrolyte interface. Introduction of Co(lll) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm^2 at 1.23 V (vs. RHE), which is ~ 2.7 times the photocurrent achieved with bare T1O2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm^2.展开更多
Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel c...Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel cells(PEMFC).Different from the traditional strategies of increasing the degree of graphitization of carbon substrates and using less Fenton-reactive metals,we prove here that proper regulation of coordination anions is also an effective way to improve the stability of NPMC.N/P cocoordinated Fe-Co dual-atomic-sites are constructed on ZIF-8 derived carbon support using a molecular precursor of C_(34)H_(28)Cl_(2)CoFeP_(2)and a“precursor-preselected”method.A composition of FeCoN_(5)P1 is infered for the dual-atom active site by microscopy and spectroscopy analysis.By comparing with N-coordinated references,we investigate the effect of P-coodination on the ORR catalysis of Fe-Co dual-atom catalysts in PEMFC.The metals in FeCoN_(5)P1 have the lower formation energy than those in the solo N-coordinated active sites of FeCoN6 and FeN_(4),and exhibits a much better fuel cell stability.This anion approach provides a new way to improve the stability of dual-atom catalysts.展开更多
Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time tha...Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time that p-type copper phosphide(Cu3P) coupled with n-type graphitic carbon nitride(g-C3N4) forms a p-n junction to accelerate charge separation and transfer for enhanced photocatalytic activity.The optimized Cu3P/g-C3N4 p-n heterojunction photocatalyst exhibits 95 times higher activity than bare g-C3N4, with an apparent quantum efficiency of 2.6% at 420 nm. A detail analysis of the reaction mechanism by photoluminescence,surface photovoltaics and electrochemical measurements revealed that the improved photocatalytic activity can be ascribed to efficient separation of photo-induced charge carriers. This work demonstrates that p-n junction structure is a useful strategy for developing efficient heterostructured photocatalysts.展开更多
Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized us...Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized using an electrostatic selfassembly method.The constructed 2D/2D p–n heterostructure had a rich hetero-interface,increased charge density,and fast separation efficiency of photoinduced carriers.The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism.Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field,ensuring an efficient separation and transfer process of photoinduced carriers.Under the optimized conditions,the CWO/CN heterojunction displayed enhanced photocatalytic H_(2)generation activity under full spectrum and visible lights irradiation,respectively.Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H_(2)generation.展开更多
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction(OER)catalyst.The surface features were extensively characterized using ...Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction(OER)catalyst.The surface features were extensively characterized using X-ray diffraction,X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy.On FeNi-modified carbon the overpotential for OER was very low(280 mV)and comparable to that on noble metal catalyst IrO_(2).The electrochemical properties have been investigated to reveal the difference between the binary alloy-and single metal-doped carbons.This work demonstrates a significant step for the development of low-cost,environmentally-friendly and highly-efficient OER catalysts.展开更多
Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials.Herein,p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-lik...Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials.Herein,p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-like CuI.The introduction of CuI can make CoAl-LDH disperse better,which brings more reaction sites for the hydrogen evolution reaction.Meanwhile,the 2D/3D structure is conducive to the construction of p-n heterojunction between the CoAl-LDH and CuI.The optical and electrochemical properties of the material indicate that the separation and transference of photon-generated carriers are promoted by the p-n heterojunction.The activity of composite catalyst(CI-10)reaches a maximum of 3.59 mmol g^(−1) h^(−1) which is 28.5 times higher than that of CuI.Furthermore,the influence of the amount of CuI and pH value on the hydrogen evolution reaction is explored.Based on the band structures of CoAl-LDH and CuI,the mechanism of photocatalytic reaction of CI-10 is proposed.The p-n heterojunction constructed with the CuI as hole receptor provides a new way to enhance the activity of photocatalytic H_(2) evolution.展开更多
Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared s...Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared samples have been characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectrophotometry. The photocatalytic properties of the Cu2O coated SiNWAs were investigated by degradation of Rhodamine B (RhB) under simulated solar light with a cut-off filter (λ 〉 420 nm). The results indicated that H2O2 could greatly improve the photocatalytic properties of Cu2O coated SiNWAs, and exhibited strong synergy effect between them. The hybrid nanowire arrays will be promising photocatalytic materials in the field of energy and environment.展开更多
Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,...Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.展开更多
Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to...Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.展开更多
The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited we...The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited wet etching and hydrothermal synthesis coupled with chemical oxidation for fabricating a three- dimensional (3D) biomimetic moth-eye coating with ternary materials (polypyrrole nanoparticles, TiO2 nanorods, and Si micropyramids, i.e., PPy/TiOa/Si-p). This coating reduced the reflectivity to 〈4% at wavelengths ranging from 200 to 2,300 nm and exhibited remarkable superhydrophilidty with a low water contact angle of 1.8°. Moreover, the composite coating had double p-n heterojunctions, allowing the high-efficiency separation of photogenerated carriers. The photo- current density of PPy/TiO2/Si-p was more than three times higher than that of TiO2/Si-p at a positive potential of 1.5 V. The proposed method provides a means to enhance solar energy conversion.展开更多
Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exh...Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.展开更多
In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐cata...In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐catalyst,which resulted in the formation of CuBi2O4/TiO2 p‐n heterojunctions,and enhanced the activities of the as‐prepared photocathodes.The novel Pt/TiO2/CuBi2O4 photocathode exhibited a photocurrent of 0.35 mA/cm2 at 0.60 V vs.Reversible Hydrogen Electrode(RHE),which was nearly twice that of the Pt/CuBi2O4 photocathode.The present study provides a facile method for increasing the efficiency of photocathodes and provides meaningful guidance for the preparation of high‐performance CuBi2O4 photocathodes.展开更多
Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical ...Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.展开更多
Advancing supercapacitor system performance hinges on the innovation of novel electrode materials seamlessly integrated within distinct architectures.Herein,we introduce a direct approach for crafting nanorod arrays f...Advancing supercapacitor system performance hinges on the innovation of novel electrode materials seamlessly integrated within distinct architectures.Herein,we introduce a direct approach for crafting nanorod arrays featuring crystalline/amorphous CuO/MnO_(2)−x.This reconfigured heterostructure results in an elevated content of electrochemically active MnO_(2).The nanorod arrays serve as efficient capacitive anodes and are easily prepared via low-potential electrochemical activation.The resulting structure spontaneously forms a p–n heterojunction,developing a built-in electric field that dramatically facilitates the charge transport process.The intrinsic electric field,in conjunction with the crystalline/amorphous architecture,enables a large capacitance of 1.0 F·cm^(−2)at 1.0 mA·cm^(−2),an ultrahigh rate capability of approximately 85.4%at 15 mA·cm^(−2),and stable cycling performance with 92.4%retention after 10,000 cycles.Theoretical calculations reveal that the presence of heterojunctions allows for the optimization of the electronic structure of this composite,leading to improved conductivity and optimized OH−adsorption energy.This work provides new insights into the rational design of heterogeneous nanostructures,which hold great potential in energy storage applications.展开更多
文摘This paper presents a p-n heterojunction photoanode based on a p-type porphyrin metal-organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core-shell n anorod array is formed by coati ng an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core-shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p-n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electr ons and holes out of the TiO2 nano rods. In additi on, the MOF coati ng sign ificantly improves the efficie ncy of charge in jecti on at the photoanode/electrolyte interface. Introduction of Co(lll) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm^2 at 1.23 V (vs. RHE), which is ~ 2.7 times the photocurrent achieved with bare T1O2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm^2.
基金This work was supported by Natural Science Foundation of Beijing Municipality(No.Z200012)the National Natural Science Foundation of China(No.21975010).
文摘Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel cells(PEMFC).Different from the traditional strategies of increasing the degree of graphitization of carbon substrates and using less Fenton-reactive metals,we prove here that proper regulation of coordination anions is also an effective way to improve the stability of NPMC.N/P cocoordinated Fe-Co dual-atomic-sites are constructed on ZIF-8 derived carbon support using a molecular precursor of C_(34)H_(28)Cl_(2)CoFeP_(2)and a“precursor-preselected”method.A composition of FeCoN_(5)P1 is infered for the dual-atom active site by microscopy and spectroscopy analysis.By comparing with N-coordinated references,we investigate the effect of P-coodination on the ORR catalysis of Fe-Co dual-atom catalysts in PEMFC.The metals in FeCoN_(5)P1 have the lower formation energy than those in the solo N-coordinated active sites of FeCoN6 and FeN_(4),and exhibits a much better fuel cell stability.This anion approach provides a new way to improve the stability of dual-atom catalysts.
基金financial support from the National Natural Science Foundation of China (21606175)the grant support from China Postdoctoral Science Foundation (2014M560768)China Fundamental Research Funds for the Central Universities (xjj2015041)
文摘Developing efficient heterostructured photocatalysts to accelerate charge separation and transfer is crucial to improving photocatalytic hydrogen generation using solar energy. Herein, we report for the first time that p-type copper phosphide(Cu3P) coupled with n-type graphitic carbon nitride(g-C3N4) forms a p-n junction to accelerate charge separation and transfer for enhanced photocatalytic activity.The optimized Cu3P/g-C3N4 p-n heterojunction photocatalyst exhibits 95 times higher activity than bare g-C3N4, with an apparent quantum efficiency of 2.6% at 420 nm. A detail analysis of the reaction mechanism by photoluminescence,surface photovoltaics and electrochemical measurements revealed that the improved photocatalytic activity can be ascribed to efficient separation of photo-induced charge carriers. This work demonstrates that p-n junction structure is a useful strategy for developing efficient heterostructured photocatalysts.
基金Outstanding Talent Research Fund of Zhengzhou University,China Postdoctoral Science Foundation(Nos.2020TQ0277 and 2020M682328)Central Plains Science and Technology Innovation Leader Project(No.214200510006)Postdoctoral Science Foundation of Henan province(No.202002010).
文摘Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized using an electrostatic selfassembly method.The constructed 2D/2D p–n heterostructure had a rich hetero-interface,increased charge density,and fast separation efficiency of photoinduced carriers.The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism.Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field,ensuring an efficient separation and transfer process of photoinduced carriers.Under the optimized conditions,the CWO/CN heterojunction displayed enhanced photocatalytic H_(2)generation activity under full spectrum and visible lights irradiation,respectively.Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H_(2)generation.
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21421001,21875118)the 111 Project(Grant No.B12015).
文摘Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction(OER)catalyst.The surface features were extensively characterized using X-ray diffraction,X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy.On FeNi-modified carbon the overpotential for OER was very low(280 mV)and comparable to that on noble metal catalyst IrO_(2).The electrochemical properties have been investigated to reveal the difference between the binary alloy-and single metal-doped carbons.This work demonstrates a significant step for the development of low-cost,environmentally-friendly and highly-efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22062001)。
文摘Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials.Herein,p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-like CuI.The introduction of CuI can make CoAl-LDH disperse better,which brings more reaction sites for the hydrogen evolution reaction.Meanwhile,the 2D/3D structure is conducive to the construction of p-n heterojunction between the CoAl-LDH and CuI.The optical and electrochemical properties of the material indicate that the separation and transference of photon-generated carriers are promoted by the p-n heterojunction.The activity of composite catalyst(CI-10)reaches a maximum of 3.59 mmol g^(−1) h^(−1) which is 28.5 times higher than that of CuI.Furthermore,the influence of the amount of CuI and pH value on the hydrogen evolution reaction is explored.Based on the band structures of CoAl-LDH and CuI,the mechanism of photocatalytic reaction of CI-10 is proposed.The p-n heterojunction constructed with the CuI as hole receptor provides a new way to enhance the activity of photocatalytic H_(2) evolution.
基金supported by the National Natural Science Foundation of China (Grant No.50772006)
文摘Highly ordered Cu2O coated silicon nanowire arrays (SiNWAs) were fabricated as photocatalyst via depositing Cu nanoparticles on silver-assisted electroless-etched SiNWAs and subsequently annealing. The as-prepared samples have been characterized by scanning electron microscopy, X-ray diffraction and UV-VIS-NIR spectrophotometry. The photocatalytic properties of the Cu2O coated SiNWAs were investigated by degradation of Rhodamine B (RhB) under simulated solar light with a cut-off filter (λ 〉 420 nm). The results indicated that H2O2 could greatly improve the photocatalytic properties of Cu2O coated SiNWAs, and exhibited strong synergy effect between them. The hybrid nanowire arrays will be promising photocatalytic materials in the field of energy and environment.
基金supported financially by the National Natural Science Foundation of China(Nos.,51572158 and 51972200)the Graduate Innovation Fund of Shaanxi University of Science&Technology+2 种基金funded by the Japan Society for the Promotion of Science(JSPS)Grant-in-Aid for the Scientific Research(KAKENHI Nos.20H00297 and Innovative Area“Mixed Anion”(No.16H06439))the Nippon Sheet Glass Foundation for Materials Science and Engineeringby the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices”。
文摘Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.
基金supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577078)the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021)~~
文摘Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21401079, 21501069, and 21671081), Fundamental Research Funds for the Central Universities (No. JUSRP51626B), and Natural Science Foundation of Jiangsu Province (Nos. BK20140158 and BK20161128).
文摘The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited wet etching and hydrothermal synthesis coupled with chemical oxidation for fabricating a three- dimensional (3D) biomimetic moth-eye coating with ternary materials (polypyrrole nanoparticles, TiO2 nanorods, and Si micropyramids, i.e., PPy/TiOa/Si-p). This coating reduced the reflectivity to 〈4% at wavelengths ranging from 200 to 2,300 nm and exhibited remarkable superhydrophilidty with a low water contact angle of 1.8°. Moreover, the composite coating had double p-n heterojunctions, allowing the high-efficiency separation of photogenerated carriers. The photo- current density of PPy/TiO2/Si-p was more than three times higher than that of TiO2/Si-p at a positive potential of 1.5 V. The proposed method provides a means to enhance solar energy conversion.
基金This work was supported by the National Young 1000 Talent Plan, Pujiang Talent Plan in Shanghai, National Natural Science Foundation of China (Nos. 61322407, 11474058, and 11322441), the Chinese Na- tional Science Fund for Talent Training in Basic Science (No. J1103204), and Ten Thousand Talents Program for young talents. Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. We acknowledge Yuanbo Zhang, Yizheng Wu, Zuimin Jiang, Likai Li, Boliang Chen for great assistance during the device fabrication and measurements.
文摘Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.
基金the National Natural Science Foundation of China(51602179,21333006,21573135,11374190)the National Basic Research Program of China(973 Program,2013CB632401)~~
文摘In this study,CuBi2O4 photocathodes were prepared using a simple electrodeposition method for photoelectrochemical(PEC)hydrogen production.The prepared photocathodes were modified with amorphous TiO2 and a Pt co‐catalyst,which resulted in the formation of CuBi2O4/TiO2 p‐n heterojunctions,and enhanced the activities of the as‐prepared photocathodes.The novel Pt/TiO2/CuBi2O4 photocathode exhibited a photocurrent of 0.35 mA/cm2 at 0.60 V vs.Reversible Hydrogen Electrode(RHE),which was nearly twice that of the Pt/CuBi2O4 photocathode.The present study provides a facile method for increasing the efficiency of photocathodes and provides meaningful guidance for the preparation of high‐performance CuBi2O4 photocathodes.
基金financially supported by the National Natural Science Foundation of China(No.61973223)the Innovative Talents in Colleges and Universities in Liaoning Province(No.2020389)+3 种基金Liao Ning Revitalization Talents Program(No.XLYC2007051)Liaoning Educational Department Foundation(No.LJKMZ20220762)the Natural Science Foundation of Liaoning Province(No.2021-MS-257)the Young and Middle-aged Scientific and Technological Innovation Talents of Shenyang Science and Technology Bureau(No.RC200352)。
文摘Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.52272181,51872016,and 52201261).
文摘Advancing supercapacitor system performance hinges on the innovation of novel electrode materials seamlessly integrated within distinct architectures.Herein,we introduce a direct approach for crafting nanorod arrays featuring crystalline/amorphous CuO/MnO_(2)−x.This reconfigured heterostructure results in an elevated content of electrochemically active MnO_(2).The nanorod arrays serve as efficient capacitive anodes and are easily prepared via low-potential electrochemical activation.The resulting structure spontaneously forms a p–n heterojunction,developing a built-in electric field that dramatically facilitates the charge transport process.The intrinsic electric field,in conjunction with the crystalline/amorphous architecture,enables a large capacitance of 1.0 F·cm^(−2)at 1.0 mA·cm^(−2),an ultrahigh rate capability of approximately 85.4%at 15 mA·cm^(−2),and stable cycling performance with 92.4%retention after 10,000 cycles.Theoretical calculations reveal that the presence of heterojunctions allows for the optimization of the electronic structure of this composite,leading to improved conductivity and optimized OH−adsorption energy.This work provides new insights into the rational design of heterogeneous nanostructures,which hold great potential in energy storage applications.