In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only ...In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only if it is the composition of a bounded nondecreasing functions and h?lderian maps of the variable exponent. We show that the composition operator H, associated with , maps the spaces into itself if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable.展开更多
We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that ever...We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.展开更多
文摘In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only if it is the composition of a bounded nondecreasing functions and h?lderian maps of the variable exponent. We show that the composition operator H, associated with , maps the spaces into itself if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable.
文摘We give a neccesary and sufficient condition on a function such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.