Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficie...Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future. A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates. The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability. The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell. This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.展开更多
基金The work was financially supported by the National Natural Science Foundation of China (No. 51173202), Innovation Foundation for Superior Postgraduate of National University of Defense Technology, Hunan Provincial Innovation Foundation for Postgraduate, Research Project of NUDT (No. ZK16-03-32), Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and Aid Program for Innovative Group of National University of Defense Technology.
文摘Electrocatalytic conversion of oxygen holds great potential for clean energy technologies, including water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. The development of highly efficient and inexpensive oxygen electrocatalysts as replacements for precious metal-based catalysts is vitally important for large-scale practical application in the future. A bifunctional oxygen electrocatalyst based on FeCo nanoparticles/N-doped carbon core-shell spheres supported on N-doped graphene sheets was prepared via one-step pyrolysis of graphitic carbon nitride and acetylacetonates. The optimized product exhibited an oxygen electrode activity of 0.87 V and excellent durability. The remarkable performance is mainly attributed to the synergetic effect arising from the FeCo nanoparticles and N-doped carbon shell. This study introduces an inexpensive and simple way to develop highly active bifunctional oxygen electrocatalysts.