Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although th...Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing prote展开更多
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t...Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).展开更多
AIM: To investigate the potential role of continuous venovenous hemofiltration (CVVH) in hemodynamics and oxygen metabolism in pigs with severe acute pancreatitis (SAP). METHODS: SAP model was produced by intraductal ...AIM: To investigate the potential role of continuous venovenous hemofiltration (CVVH) in hemodynamics and oxygen metabolism in pigs with severe acute pancreatitis (SAP). METHODS: SAP model was produced by intraductal injection of sodium taurocholate [4%, 1 mL/kg body weight (BW)] and trypsin (2 U/kg BW). Animals were allocated either to untreated controls as group 1 or to one of two treatment groups as group 2 receiving a low-volume CVVH [20 mL/(kg·h)], and group 3 receiving a high-volume CVVH [100 (mL/kg·h)]. Swan-Ganz catheter was inserted during the operation. Heart rate, arterial blood pressure, cardiac output, mean pulmonary arterial pressure, pulmonary arterial wedge pressure, central venous pressure, systemic vascular resistance, oxygen delivery, oxygen consumption, oxygen extraction ratio, as well as survival of pigs were evaluated in the study. RESULTS: Survival time was significantly prolonged by low-volume and high-volume CVVHs, which was more pronounced in the latter. High-volume CVVH was significantly superior compared with less intensive treatment modalities (low-volume CVVH) in systemic inflammatory reaction protection. The major hemodynamic finding was that pancreatitis-induced hypotension was significantly attenuated by intensive CVVH (87.4±12.5 kPa vs116.3±7.8 kPa,P<0.01). The development of hyperdynamic circulatory failure was simultaneously attenuated, as reflected by a limited increase in cardiac output, an attenuated decrease in systemic vascular resistance and an elevation in oxygen extraction ratio. CONCLUSION: CVVH blunts the pancreatitis-induced cardiovascular response and increases tissue oxygen extraction. The high-volume CVVH is distinctly superior in preventing sepsis-related hemodynamic impairment.展开更多
文摘Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing prote
文摘Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).
基金Supported by the Social Development Foundation of Jiangsu Province, No.BS2000051
文摘AIM: To investigate the potential role of continuous venovenous hemofiltration (CVVH) in hemodynamics and oxygen metabolism in pigs with severe acute pancreatitis (SAP). METHODS: SAP model was produced by intraductal injection of sodium taurocholate [4%, 1 mL/kg body weight (BW)] and trypsin (2 U/kg BW). Animals were allocated either to untreated controls as group 1 or to one of two treatment groups as group 2 receiving a low-volume CVVH [20 mL/(kg·h)], and group 3 receiving a high-volume CVVH [100 (mL/kg·h)]. Swan-Ganz catheter was inserted during the operation. Heart rate, arterial blood pressure, cardiac output, mean pulmonary arterial pressure, pulmonary arterial wedge pressure, central venous pressure, systemic vascular resistance, oxygen delivery, oxygen consumption, oxygen extraction ratio, as well as survival of pigs were evaluated in the study. RESULTS: Survival time was significantly prolonged by low-volume and high-volume CVVHs, which was more pronounced in the latter. High-volume CVVH was significantly superior compared with less intensive treatment modalities (low-volume CVVH) in systemic inflammatory reaction protection. The major hemodynamic finding was that pancreatitis-induced hypotension was significantly attenuated by intensive CVVH (87.4±12.5 kPa vs116.3±7.8 kPa,P<0.01). The development of hyperdynamic circulatory failure was simultaneously attenuated, as reflected by a limited increase in cardiac output, an attenuated decrease in systemic vascular resistance and an elevation in oxygen extraction ratio. CONCLUSION: CVVH blunts the pancreatitis-induced cardiovascular response and increases tissue oxygen extraction. The high-volume CVVH is distinctly superior in preventing sepsis-related hemodynamic impairment.