AIM: To identify the property of dendritic cells (DCs) of peripheral blood monocytes (PBMC) in patients with chronic HBV infection. METHODS: Twenty patients with persistent HBV infection were included in this study, 1...AIM: To identify the property of dendritic cells (DCs) of peripheral blood monocytes (PBMC) in patients with chronic HBV infection. METHODS: Twenty patients with persistent HBV infection were included in this study, 10 healthy subjects being used as a control group. The peripheral blood mononuclear cells (PBMC) of T cell-depleted populations were incubated and induced into mature dendritic cells in the RPMI-1640 medium in the presence of cytokines GM-CSF, IL-4, FLt-3,TNF-alpha and 100mL.L(-1 )of fetal calf serum for a total of 10-12 days. The expressions of surface markers on DCs were evaluated using flow cytometric analysis. ELISA method was used to determine the cytokine levels of interleukin-12 (IL-12) and IL-10 in the supernatant produced by DCs. For detection of the stimulatory capacity of DCs to T cell proliferation, mytomycin C-treated DC were incubated with allogenic T cells. RESULTS: A typical morphology of mature DCs from healthy subjects and HBV-infected patients was induced in in vitro incubation, but the proliferation ability and cellular number of DCs from HBV-infected patients significantly decreased compared with healthy individuals. In particular, the expression levels of HLA-DR, CD80 (B7-1) and CD86 (B7-2) on DC surface from patients were also lower than that from healthy individuals (0.46 vs 0.92 for HLA-DR, 0.44 vs 0.88 for CD80 and 0.44 vs 0.84 for CD86,P【0.05). The stimulatory capacity and production of IL-12 of DCs from patients in allogenic mixed lymphocyte reaction (AMLR) significantly decreased, but the production level of nitric oxide (NO) by DCs simultaneously increased compared with healthy subjects (86 +/- 15 vs 170 +/- 22 micromol.L(-1), P 【0.05). CONCLUSION: The patients with chronic HBV infection have the defective function and immature phenotype of dendritic cells, which may be associated with the inability of efficient presentation of HBV antigens to host immune system for the clearance of HBV.展开更多
Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biologica...Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biological applications of nano-graphene oxide(NGO),i.e.,single-layer graphene oxide sheets down to a few nanometers in lateral width.We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments.We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration.The NGO sheets are found to be photoluminescent in the visible and infrared regions.The intrinsic photoluminescence(PL)of NGO is used for live cell imaging in the near-infrared(NIR)with little background.We found that simple physisorption viaπ-stacking can be used for loading doxorubicin,a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.Owing to its small size,intrinsic optical properties,large specifi c surface area,low cost,and useful non-covalent interactions with aromatic drug molecules,NGO is a promising new material for biological and medical applications.展开更多
Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N...Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N ratio, aeration rate and initial moisture content on gaseous emission during the composting of pig faeces from Chinese Ganqinfen system. The results showed that about 23.9% to 45.6% of total organic carbon (TOC) was lost in the form of CO2 and 0.8% to 7.5% of TOC emitted as CH4. Most of the nitrogen was lost in the form of NH3, which account for 9.6% to 32.4% of initial nitrogen. N20 was also an important way of nitrogen losses and 1.5% to 7.3% of initial total nitrogen was lost as it. Statistic analysis showed that the aeration rate is the most important factor which could affect the NH3 (p = 0.0189), CH4 (p = 0.0113) and N20 (p = 0.0493) emissions significantly. Higher aeration rates reduce the CH4 emission but increase the NH3 and N20 losses. C/N ratio could affect the NH3 (p = 0.0442) and CH4 (p = 0.0246) emissions significantly, but not the N20. Lower C/N ratio caused higher NH3 and CH4 emissions. The initial moisture content can not influence the gaseous emission significantly. Most treatments were matured after 37 days, except a trial with high moisture content and a low C/N ratio.展开更多
In this report, we demonstrate that sodium hydrosulfide (NariS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the HzS donor to seed...In this report, we demonstrate that sodium hydrosulfide (NariS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the HzS donor to seedling cuttings of sweet potato (Ipomoea batatas L.) promoted the number and length of adventitious roots in a dose-dependent manner. It was also verified that H2S or HS- rather than other sulfur-containing components derived from NariS could be attributed to the stimulation of adventitious root formation. A rapid increase in endogenous H2S, indole acetic acid (IAA) and NO were sequentially observed in shoot tips of sweet potato seedlings treated with HallS. Further investigation showed that H2S-mediated root formation was alleviated by N-1-naphthylphthalamic acid (NPA), an IAA transport inhibitor, and 2-(4-carboxyphenyl). 4,4,5,5-tetramethylimidazoline-1-oxyl-3-0xide (cPTIO), an NO scavenger. Similar phenomena in H2S donor-dependent root organogenesis were observed in both excised willow (Salix matsudana var. tortuosa Vilm) shoots and soybean (Glycine max L.) seedlings. These results indicated that the process of H2S-induced adventitious root formation was likely mediated by IAA and NO, and that H2S acts upstream of IAA and NO signal transduction pathways.展开更多
A graphene/TiO_(2) nanocrystals hybrid has been successfully prepared by directly growing TiO_(2) nanocrystals on graphene oxide(GO)sheets.The direct growth of the nanocrystals on GO sheets was achieved by a two-step ...A graphene/TiO_(2) nanocrystals hybrid has been successfully prepared by directly growing TiO_(2) nanocrystals on graphene oxide(GO)sheets.The direct growth of the nanocrystals on GO sheets was achieved by a two-step method,in which TiO_(2) was first coated on GO sheets by hydrolysis and crystallized into anatase nanocrystals by hydrothermal treatment in the second step.Slow hydrolysis induced by the use of EtOH/H2O mixed solvent and addition of H2SO4 facilitates the selective growth of TiO_(2) on GO and suppresses growth of free TiO_(2) in solution.The method offers easy access to the GO/TiO_(2) nanocrystals hybrid with a uniform coating and strong interactions between TiO_(2) and the underlying GO sheets.The strong coupling gives advanced hybrid materials with various applications including photocatalysis.The prepared graphene/TiO_(2) nanocrystals hybrid has superior photocatalytic activity to other TiO_(2) materials in the degradation of rhodamine B,showing an impressive three-fold photocatalytic enhancement over P25.It is expected that the hybrid material could also be promising for various other applications including lithium ion batteries,where strong electrical coupling to TiO_(2) nanoparticles is essential.展开更多
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t...Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).展开更多
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this ...Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.展开更多
Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and ef...Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.展开更多
Single-atom site(SA)catalysts on N-doped carbon(CN)materials exhibit prominent performance for their active sites being M-Nx.Due to the commonly random doping behaviors of N species in these CN,it is a tough issue to ...Single-atom site(SA)catalysts on N-doped carbon(CN)materials exhibit prominent performance for their active sites being M-Nx.Due to the commonly random doping behaviors of N species in these CN,it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts.Herein,we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides.It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host.Owing to the coordination by pyrrolic-N,the SA Cu catalyst displays an enhanced activity(two-fold)for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity(99%)under mild conditions.The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway,which accounts for the improved catalytic effeciency.展开更多
Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphe...Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites.展开更多
In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required t...In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.展开更多
The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate t...The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate the oxidative damage to wheat (Triticum aestivum L.) leaves induced by 150 and 300 mmol/L NaCl treatments, respectively. Further results proved that NO significantly enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), both of which separately contributed to the delay of O2- and H2O2 accumulation in wheat leaves under saltstress. Meanwhile, the accumulation of proline was apparently accelerated. Therefore, these results suggested that NO could strongly protect wheat leaves from oxidative damage caused by salt stress.展开更多
Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly...Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe204 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of -58 dB and - 12 times broadening of the bandwidth (at -10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe204-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.展开更多
Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases(NOS) compris...Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases(NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interest-ingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting theetiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and hasbeen associated with tumour grade, proliferation rate and expression of important signaling componentsassociated with cancer development such as the oestrogen receptor. It appears that high levels of NOSexpression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumorcells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxicallytherefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties.Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis byupregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53,poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understand-ing at the molecular level of the role of NO in cancer will have profound therapeutic implications for thediagnosis and treatment of disease.展开更多
AIM: To characterize the correlation between severity of hepatopulmonary syndrome (HPS) and degree of hepatic dysfunction,and to explore how intestinal endotoxemia (IETM) affects the development of HPS in cirrhotic ra...AIM: To characterize the correlation between severity of hepatopulmonary syndrome (HPS) and degree of hepatic dysfunction,and to explore how intestinal endotoxemia (IETM) affects the development of HPS in cirrhotic rats. METHODS: Male Wister rats were fed with a diet containing maize flour,lard,cholesterol,and alcohol and injected subcutaneously with CCl4 oil solution every two days for 8 wk to induce typical cirrhosis and development of HPS. The animals were also given a nitric oxide (NO) production inhibitor,Nω-nitro-L-arginine methyl ester (L-NAME) intraperitoneally,and an iNOS inhibitor,aminoguanidine hydrochloride (AG) via gavage daily from the end of the 4th wk to the end of the 6th or 8th wk,or a HO-1 inhibitor,zinc protoporphyrin (ZnPP) intraperitoneally 12 h prior to killing. Blood,liver and lung tissues were sampled. RESULTS: Histological deterioration of the lung paralleled to that of the liver in the cirrhotic rats. The number of pulmonary capillaries was progressively increased from 6.1 ± 1.1 (count/filed) at the 4th wk to 14.5 ± 2.4 (count/filed) at the 8th wk in the cirrhotic rats. Increased pulmonary capillaries were associated with increased blood levels of lipopolysaccharide (LPS)(0.31 ± 0.08 EU/mL vs control 0.09 ± 0.03 EU/mL),alanine transferase (ALT,219.1 ± 17.4 U/L vs control 5.9 ± 2.2 U/L) and portal vein pressure. Compared with normal control animals,the number of total cells in bronchoalveolar lavage fluid (BALF) of the cirrhotic rats at the 8th wk was not changed,but the number of macrophages and the ratio of macrophages to total cells were increased by nearly 2-fold,protein expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) started to increase significantly at the 4th wk,and reached its peak at the 8th wk in the lung of cirrhotic rats. The increase of iNOS expression appeared to be quicker than that of eNOS. NO2-/NO3-was also increased,which was correlated to the increase of iNOS (r = 0.7699,P < 0.0001) and eNOS (r = 0.5829,P < 0.002展开更多
AIM:To study relationship of injury induced by nitric oxide, oxidation, peroxidation,lipoperoxidation with chronic cholecystitis.METHODS:The values of plasma nitric oxide (P-NO), plasma vitamin C (P-VC), plasma vitami...AIM:To study relationship of injury induced by nitric oxide, oxidation, peroxidation,lipoperoxidation with chronic cholecystitis.METHODS:The values of plasma nitric oxide (P-NO), plasma vitamin C (P-VC), plasma vitamin E (P-VE), plasma beta-carotene (P-beta-CAR), plasma lipoperoxides (P-LPO), erythrocyte superoxide dismutase (E-SOD), erythrocyte catalase (E-CAT), erythrocyte glutathione peroxidase (E-GSH-Px) activities and erythrocyte lipoperoxides (E-LPO) level in 77 patients with chronic cholecystitis and 80 healthy control subjects were determined, differences of the above average values between the patient group and the control group and differences of the average values between preoperative and postoperative patients were analyzed and compared, linear regression and correlation of the disease course with the above determination values as well as the stepwise regression and correlation of the course with the values were analyzed.RESULTS:Compared with the control group, the average values of P-NO, P-LPO, E-LPO were significantly increased (P【0.01), and of P-VC, P-VE, P-beta-CAR, E-SOD, E-CAT and E-GSH-Px decreased (P 【0.01) in the patient group. The analysis of the linear regression and correlation showed that with prolonging of the course, the values of P-NO, P-LPO and E-LPO in the patients were gradually ascended and the values of P-VC,P-VE, P-beta-CAR, E-SOD, E-CAT and E-GSH-Px descended (P【0.01). The analysis of the stepwise regression and correlation indicated that the correlation of the course with P-NO, P-VE and P-beta-CAR values was the closest. Compared with the preoperative patients, the average values of P-NO, P-LPO and E-LPO were significantly decreased (P 【0.01) and the average values of P-VC, E-SOD, E-CAT and E-GSH-Px in postoperative patients increased (P 【0.01) in postoperative patients. But there was no significant difference in the average values of P-VE, P-beta-CAR preoperative and postoperative patients.CONCLUSION:Chronic cholecystitis could induce the increase of nitric oxid展开更多
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg...Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.展开更多
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The developme...Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.展开更多
Background Urinary trypsin inhibitor inhibits the enhanced production of pro-inflammatory molecules. Hemeoxygenase-1 induction protects against ischemia/repeffusion injury, oxidative stress, inflammation, transplant r...Background Urinary trypsin inhibitor inhibits the enhanced production of pro-inflammatory molecules. Hemeoxygenase-1 induction protects against ischemia/repeffusion injury, oxidative stress, inflammation, transplant rejection, apoptosis, and other conditions. However, it is unknown if a combined hemin and ulinastatin pretreatment could result in protective effects for septic shock. In this study, we investigated the role of hemin pretreatment combined with ulinastatin on septic shock in rats. Methods Eighty healthy, male Sprague-Dawley rats were randomly divided into four groups: group S, group H, group U and group HU. Groups S and U received 1 ml normal saline intraperitoneally, while groups H and HU both received 1 ml (100 mg/kg) hemin. Twenty-four hours later, 0.5 ml (10 mg/kg) E. coil lipopolysaccharide was injected intravenously to replicate the experimental model of septic shock. After an initial 25% decrease in the mean arterial pressure, corresponding to time point 0, groups HU and U received 0.5 ml 10 000 U/kg ulinastatin intravenously, and the others received 0.5 ml normal saline. Results The number of deaths in groups H and U was lower than that in the group S (P〈0.05), and was higher than that in group HU (all P〈0.05) respectively. The mean arterial pressure (MAP) in the group S was significantly greater than that in group H (P〈0.05), and was lower than that in group HU and group U (P〈0.05). The plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cr) and blood urea nitrogen (BUN), the malondial- dehyde (MDA) of liver, kidney and lung, and the lung Evans blue (EB) contents in groups H and U, were greater than that in group HU (all P〈0.05), and were lower than that in group S (all P〈0.05). In contrast, the plasma levels of CO in groups H and HU were higher than that in groups S and U (all P〈0.05), and SOD of liver, kidney and lung in groups H and U were higher than that in group S, 展开更多
基金National Natural Science Foundation of China,No.39970831.
文摘AIM: To identify the property of dendritic cells (DCs) of peripheral blood monocytes (PBMC) in patients with chronic HBV infection. METHODS: Twenty patients with persistent HBV infection were included in this study, 10 healthy subjects being used as a control group. The peripheral blood mononuclear cells (PBMC) of T cell-depleted populations were incubated and induced into mature dendritic cells in the RPMI-1640 medium in the presence of cytokines GM-CSF, IL-4, FLt-3,TNF-alpha and 100mL.L(-1 )of fetal calf serum for a total of 10-12 days. The expressions of surface markers on DCs were evaluated using flow cytometric analysis. ELISA method was used to determine the cytokine levels of interleukin-12 (IL-12) and IL-10 in the supernatant produced by DCs. For detection of the stimulatory capacity of DCs to T cell proliferation, mytomycin C-treated DC were incubated with allogenic T cells. RESULTS: A typical morphology of mature DCs from healthy subjects and HBV-infected patients was induced in in vitro incubation, but the proliferation ability and cellular number of DCs from HBV-infected patients significantly decreased compared with healthy individuals. In particular, the expression levels of HLA-DR, CD80 (B7-1) and CD86 (B7-2) on DC surface from patients were also lower than that from healthy individuals (0.46 vs 0.92 for HLA-DR, 0.44 vs 0.88 for CD80 and 0.44 vs 0.84 for CD86,P【0.05). The stimulatory capacity and production of IL-12 of DCs from patients in allogenic mixed lymphocyte reaction (AMLR) significantly decreased, but the production level of nitric oxide (NO) by DCs simultaneously increased compared with healthy subjects (86 +/- 15 vs 170 +/- 22 micromol.L(-1), P 【0.05). CONCLUSION: The patients with chronic HBV infection have the defective function and immature phenotype of dendritic cells, which may be associated with the inability of efficient presentation of HBV antigens to host immune system for the clearance of HBV.
基金by NIH-NCI funded CCNE TR at Stanford University.We are grateful to Drs.Alice Fan and Dean Felsher for providing the antibodies used in this work.
文摘Two-dimensional graphene offers interesting electronic,thermal,and mechanical properties that are currently being explored for advanced electronics,membranes,and composites.Here we synthesize and explore the biological applications of nano-graphene oxide(NGO),i.e.,single-layer graphene oxide sheets down to a few nanometers in lateral width.We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments.We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration.The NGO sheets are found to be photoluminescent in the visible and infrared regions.The intrinsic photoluminescence(PL)of NGO is used for live cell imaging in the near-infrared(NIR)with little background.We found that simple physisorption viaπ-stacking can be used for loading doxorubicin,a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro.Owing to its small size,intrinsic optical properties,large specifi c surface area,low cost,and useful non-covalent interactions with aromatic drug molecules,NGO is a promising new material for biological and medical applications.
基金part of the Sino-German cooperation project of the Recycling of Organic Residues from Agricultural and Municipal Residues in China (http://www.organicresidues.de) and the National Natural Science Foundation of China (No. 40971177)
文摘Gaseous emission (N2O, CH4 and NH3) from composting can be an important source of anthropogenic greenhouse gas and air pollution. A laboratory scale orthogonal experiment was conducted to estimate the effects of C/N ratio, aeration rate and initial moisture content on gaseous emission during the composting of pig faeces from Chinese Ganqinfen system. The results showed that about 23.9% to 45.6% of total organic carbon (TOC) was lost in the form of CO2 and 0.8% to 7.5% of TOC emitted as CH4. Most of the nitrogen was lost in the form of NH3, which account for 9.6% to 32.4% of initial nitrogen. N20 was also an important way of nitrogen losses and 1.5% to 7.3% of initial total nitrogen was lost as it. Statistic analysis showed that the aeration rate is the most important factor which could affect the NH3 (p = 0.0189), CH4 (p = 0.0113) and N20 (p = 0.0493) emissions significantly. Higher aeration rates reduce the CH4 emission but increase the NH3 and N20 losses. C/N ratio could affect the NH3 (p = 0.0442) and CH4 (p = 0.0246) emissions significantly, but not the N20. Lower C/N ratio caused higher NH3 and CH4 emissions. The initial moisture content can not influence the gaseous emission significantly. Most treatments were matured after 37 days, except a trial with high moisture content and a low C/N ratio.
基金Supported by the Great Project of the Natural Science Foundation from Anhui Provincial Education Department (ZD200910)the Natural Science Foundation of Anhui Province (070411009)the Innovation Funding to Undergraduate Students at HFUT (XS08072, 0637)
文摘In this report, we demonstrate that sodium hydrosulfide (NariS), a hydrogen sulfide (H2S) donor, promoted adventitious root formation mediated by auxin and nitric oxide (NO). Application of the HzS donor to seedling cuttings of sweet potato (Ipomoea batatas L.) promoted the number and length of adventitious roots in a dose-dependent manner. It was also verified that H2S or HS- rather than other sulfur-containing components derived from NariS could be attributed to the stimulation of adventitious root formation. A rapid increase in endogenous H2S, indole acetic acid (IAA) and NO were sequentially observed in shoot tips of sweet potato seedlings treated with HallS. Further investigation showed that H2S-mediated root formation was alleviated by N-1-naphthylphthalamic acid (NPA), an IAA transport inhibitor, and 2-(4-carboxyphenyl). 4,4,5,5-tetramethylimidazoline-1-oxyl-3-0xide (cPTIO), an NO scavenger. Similar phenomena in H2S donor-dependent root organogenesis were observed in both excised willow (Salix matsudana var. tortuosa Vilm) shoots and soybean (Glycine max L.) seedlings. These results indicated that the process of H2S-induced adventitious root formation was likely mediated by IAA and NO, and that H2S acts upstream of IAA and NO signal transduction pathways.
基金This work was supported in part by Intel,MARCO-MSD,and ONR.
文摘A graphene/TiO_(2) nanocrystals hybrid has been successfully prepared by directly growing TiO_(2) nanocrystals on graphene oxide(GO)sheets.The direct growth of the nanocrystals on GO sheets was achieved by a two-step method,in which TiO_(2) was first coated on GO sheets by hydrolysis and crystallized into anatase nanocrystals by hydrothermal treatment in the second step.Slow hydrolysis induced by the use of EtOH/H2O mixed solvent and addition of H2SO4 facilitates the selective growth of TiO_(2) on GO and suppresses growth of free TiO_(2) in solution.The method offers easy access to the GO/TiO_(2) nanocrystals hybrid with a uniform coating and strong interactions between TiO_(2) and the underlying GO sheets.The strong coupling gives advanced hybrid materials with various applications including photocatalysis.The prepared graphene/TiO_(2) nanocrystals hybrid has superior photocatalytic activity to other TiO_(2) materials in the degradation of rhodamine B,showing an impressive three-fold photocatalytic enhancement over P25.It is expected that the hybrid material could also be promising for various other applications including lithium ion batteries,where strong electrical coupling to TiO_(2) nanoparticles is essential.
文摘Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).
文摘Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.
基金Supported by National Natural Science Foundation of China,No.81170416 and No.81273264Doctoral Fund of Ministry of Education of China,No.20100061110069+2 种基金Jilin Province Science and Technology Bureau International Cooperation Fund,No.2011742Techpool Research Fund,No.01201046Jilin Province Nature Science Foundation,No.201015178
文摘Hepatic ischemia-reperfusion injury(IRI) is a patho-physiological event post liver surgery or transplantation and significantly influences the prognosis of liver func-tion. The mechanisms of IRI remain unclear, and effec-tive methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabo-lism, mitochondria, oxidative stress, intracellular cal-cium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide(NO)in protecting against liver IRI has recently been report-ed. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhanc-ing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for control-ling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.
基金supported by the National Key R&D Program of China(Nos.2018YFA0702003 and 2016YFA0202801)the National Natural Science Foundation of China(Nos.21890383,21671117,21871159,and 21901135)+2 种基金the National Postdoctoral Program for Innovative Talents,the Shuimu Tsinghua Scholar,Science and Technology Key Project of Guangdong Province of China(No.2020B010188002)Beijing Municipal Science&Technology Commission(No.Z191100007219003)We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility(SSRF)and 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility(BSRF).
文摘Single-atom site(SA)catalysts on N-doped carbon(CN)materials exhibit prominent performance for their active sites being M-Nx.Due to the commonly random doping behaviors of N species in these CN,it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts.Herein,we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides.It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host.Owing to the coordination by pyrrolic-N,the SA Cu catalyst displays an enhanced activity(two-fold)for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity(99%)under mild conditions.The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway,which accounts for the improved catalytic effeciency.
基金sponsored by the National Science Foundation (NSF, CMMI-1562907)the GAANN Fellowship for financial support (No. P200A150330)the Navy STEM Fellowship and the GAANN Fellowship for financial support
文摘Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites.
基金the Foundation of National Natural Science Foundation of China(51773169 and 51973173)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-164)Y.Q.Guo thanks the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202055)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘In order to ensure the operational reliability and infor-mation security of sophisticated electronic components and to protect human health,efficient electromagnetic interference(EMI)shielding materials are required to attenuate electromagnetic wave energy.In this work,the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide(NaOH)/urea solution,and cellulose aerogels(CA)are prepared by gelation and freeze-drying.Then,the cellulose carbon aerogel@reduced graphene oxide aerogels(CCA@rGO)are prepared by vacuum impregnation,freeze-drying followed by thermal annealing,and finally,the CCA@rGO/polydimethylsiloxane(PDMS)EMI shielding composites are prepared by backfilling with PDMS.Owing to skin-core structure of CCA@rGO,the complete three-dimensional(3D)double-layer con-ductive network can be successfully constructed.When the loading of CCA@rGO is 3.05 wt%,CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness(EMI SE)of 51 dB,which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites(13 dB)with the same loading of fillers.At this time,the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability(T_(HRI) of 178.3℃)and good thermal conductivity coefficient(λ of 0.65 W m^(-1) K^(-1)).Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight,flexible EMI shielding composites.
文摘The changes of chlorophyll and malondialde-hyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate the oxidative damage to wheat (Triticum aestivum L.) leaves induced by 150 and 300 mmol/L NaCl treatments, respectively. Further results proved that NO significantly enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), both of which separately contributed to the delay of O2- and H2O2 accumulation in wheat leaves under saltstress. Meanwhile, the accumulation of proline was apparently accelerated. Therefore, these results suggested that NO could strongly protect wheat leaves from oxidative damage caused by salt stress.
基金This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11774027, 51132002, 51072024 and 51372282).
文摘Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe204 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of -58 dB and - 12 times broadening of the bandwidth (at -10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe204-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.
文摘Nitric oxide (NO) is a pleiotropic regulator, critical to numerous biological processes, including va-sodilatation, neurotransmission and macrophage-mediated immunity. The family of nitric oxide synthases(NOS) comprises inducible NOS (iNOS), endothelial NOS (eNOS), and neuronal NOS (nNOS). Interest-ingly, various studies have shown that all three isoforms can be involved in promoting or inhibiting theetiology of cancer. NOS activity has been detected in tumour cells of various histogenetic origins and hasbeen associated with tumour grade, proliferation rate and expression of important signaling componentsassociated with cancer development such as the oestrogen receptor. It appears that high levels of NOSexpression (for example, generated by activated macrophages) may be cytostatic or cytotoxic for tumorcells, whereas low level activity can have the opposite effect and promote tumour growth. Paradoxicallytherefore, NO (and related reactive nitrogen species) may have both genotoxic and angiogenic properties.Increased NO-generation in a cell may select mutant p53 cells and contribute to tumour angiogenesis byupregulating VEGF. In addition, NO may modulate tumour DNA repair mechanisms by upregulating p53,poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase (DNA-PK). An understand-ing at the molecular level of the role of NO in cancer will have profound therapeutic implications for thediagnosis and treatment of disease.
基金Supported by the Awards to University Academic Leaders Granted by the Government of Shanxi Province of China to Hui-Ying Zhang and partially by the US National Institute of Health, NIAAA, Grant R01 AA014428 to Cheng Ji
文摘AIM: To characterize the correlation between severity of hepatopulmonary syndrome (HPS) and degree of hepatic dysfunction,and to explore how intestinal endotoxemia (IETM) affects the development of HPS in cirrhotic rats. METHODS: Male Wister rats were fed with a diet containing maize flour,lard,cholesterol,and alcohol and injected subcutaneously with CCl4 oil solution every two days for 8 wk to induce typical cirrhosis and development of HPS. The animals were also given a nitric oxide (NO) production inhibitor,Nω-nitro-L-arginine methyl ester (L-NAME) intraperitoneally,and an iNOS inhibitor,aminoguanidine hydrochloride (AG) via gavage daily from the end of the 4th wk to the end of the 6th or 8th wk,or a HO-1 inhibitor,zinc protoporphyrin (ZnPP) intraperitoneally 12 h prior to killing. Blood,liver and lung tissues were sampled. RESULTS: Histological deterioration of the lung paralleled to that of the liver in the cirrhotic rats. The number of pulmonary capillaries was progressively increased from 6.1 ± 1.1 (count/filed) at the 4th wk to 14.5 ± 2.4 (count/filed) at the 8th wk in the cirrhotic rats. Increased pulmonary capillaries were associated with increased blood levels of lipopolysaccharide (LPS)(0.31 ± 0.08 EU/mL vs control 0.09 ± 0.03 EU/mL),alanine transferase (ALT,219.1 ± 17.4 U/L vs control 5.9 ± 2.2 U/L) and portal vein pressure. Compared with normal control animals,the number of total cells in bronchoalveolar lavage fluid (BALF) of the cirrhotic rats at the 8th wk was not changed,but the number of macrophages and the ratio of macrophages to total cells were increased by nearly 2-fold,protein expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) started to increase significantly at the 4th wk,and reached its peak at the 8th wk in the lung of cirrhotic rats. The increase of iNOS expression appeared to be quicker than that of eNOS. NO2-/NO3-was also increased,which was correlated to the increase of iNOS (r = 0.7699,P < 0.0001) and eNOS (r = 0.5829,P < 0.002
基金The item of scieace and technology research plans of Zhejiang Province (No 1999-2-121)
文摘AIM:To study relationship of injury induced by nitric oxide, oxidation, peroxidation,lipoperoxidation with chronic cholecystitis.METHODS:The values of plasma nitric oxide (P-NO), plasma vitamin C (P-VC), plasma vitamin E (P-VE), plasma beta-carotene (P-beta-CAR), plasma lipoperoxides (P-LPO), erythrocyte superoxide dismutase (E-SOD), erythrocyte catalase (E-CAT), erythrocyte glutathione peroxidase (E-GSH-Px) activities and erythrocyte lipoperoxides (E-LPO) level in 77 patients with chronic cholecystitis and 80 healthy control subjects were determined, differences of the above average values between the patient group and the control group and differences of the average values between preoperative and postoperative patients were analyzed and compared, linear regression and correlation of the disease course with the above determination values as well as the stepwise regression and correlation of the course with the values were analyzed.RESULTS:Compared with the control group, the average values of P-NO, P-LPO, E-LPO were significantly increased (P【0.01), and of P-VC, P-VE, P-beta-CAR, E-SOD, E-CAT and E-GSH-Px decreased (P 【0.01) in the patient group. The analysis of the linear regression and correlation showed that with prolonging of the course, the values of P-NO, P-LPO and E-LPO in the patients were gradually ascended and the values of P-VC,P-VE, P-beta-CAR, E-SOD, E-CAT and E-GSH-Px descended (P【0.01). The analysis of the stepwise regression and correlation indicated that the correlation of the course with P-NO, P-VE and P-beta-CAR values was the closest. Compared with the preoperative patients, the average values of P-NO, P-LPO and E-LPO were significantly decreased (P 【0.01) and the average values of P-VC, E-SOD, E-CAT and E-GSH-Px in postoperative patients increased (P 【0.01) in postoperative patients. But there was no significant difference in the average values of P-VE, P-beta-CAR preoperative and postoperative patients.CONCLUSION:Chronic cholecystitis could induce the increase of nitric oxid
基金supported by the Research Grant Council of Hong Kong(HKU707012P)to MFZfrom a Chinese National "973" project (2011CB808903)+1 种基金a "CAS Hundred Talents" project under Chinese Academy of Sciences to CYWSouth African National Science Foundation Grant SA/China Project 67220 to SP and MFZ
文摘Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.
基金supported by the National Natural Science Foundation of China(21325731,51478241,21221004)~~
文摘Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.
文摘Background Urinary trypsin inhibitor inhibits the enhanced production of pro-inflammatory molecules. Hemeoxygenase-1 induction protects against ischemia/repeffusion injury, oxidative stress, inflammation, transplant rejection, apoptosis, and other conditions. However, it is unknown if a combined hemin and ulinastatin pretreatment could result in protective effects for septic shock. In this study, we investigated the role of hemin pretreatment combined with ulinastatin on septic shock in rats. Methods Eighty healthy, male Sprague-Dawley rats were randomly divided into four groups: group S, group H, group U and group HU. Groups S and U received 1 ml normal saline intraperitoneally, while groups H and HU both received 1 ml (100 mg/kg) hemin. Twenty-four hours later, 0.5 ml (10 mg/kg) E. coil lipopolysaccharide was injected intravenously to replicate the experimental model of septic shock. After an initial 25% decrease in the mean arterial pressure, corresponding to time point 0, groups HU and U received 0.5 ml 10 000 U/kg ulinastatin intravenously, and the others received 0.5 ml normal saline. Results The number of deaths in groups H and U was lower than that in the group S (P〈0.05), and was higher than that in group HU (all P〈0.05) respectively. The mean arterial pressure (MAP) in the group S was significantly greater than that in group H (P〈0.05), and was lower than that in group HU and group U (P〈0.05). The plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cr) and blood urea nitrogen (BUN), the malondial- dehyde (MDA) of liver, kidney and lung, and the lung Evans blue (EB) contents in groups H and U, were greater than that in group HU (all P〈0.05), and were lower than that in group S (all P〈0.05). In contrast, the plasma levels of CO in groups H and HU were higher than that in groups S and U (all P〈0.05), and SOD of liver, kidney and lung in groups H and U were higher than that in group S,