In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the ...In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle o展开更多
Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assi...Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.展开更多
To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were u...To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.展开更多
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye...The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.展开更多
The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological cond...The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological conditions or mining structures, a method of coupling FLAC3D with GIS was presented to calculate the spatial distribution of overburden strata failure in longwall coal mines. After building the spatio-temporal database from the calculation results of FLAC3D, the height of the mining-induced fractured zone in the overburden strata can be calculated by using the given height function. The results of case study show that the height of the fractured zone reached the maximum value at the face advance equal to about the panel width. The outcome of the work presented will be helpful in practice to improve safety in the production.展开更多
基金Acknowledgments The program was supported by the National Natural Science Foundation of China (51427804) and the Open Found of State Key Laboratory of Deep Coal Mining & Environment Protection.
文摘In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle o
文摘Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.
基金National Science and Technology Supporting Program(2012BAB13B01)National Key Scientific Instrument and Equipment Development Program(2012YQ030126)+2 种基金Coal United Project of National Natural Science Foundation(U1261203)China Geological Survey Project(1212011220798)National Science and Technology Major Project(2011ZX05035-004-001HZ).
文摘To study the impact of modern coal mining on overlying strata and its water bearing conditions,integrated time-lapse geophysical prospecting integrating 3D seismic,electrical and ground penetrating radar method were used.Through observing and analyzing the geophysical data variations of all stages of pre-mining,mining and post-mining as well as post-mining deposition stable period,impacts of coal mining on stratigraphic structure and its water bearing were studied and modern coal mining induced stratigraphic change pattern was summarized.The research result shows that the stratigraphic structure and the water bearing of surface layer during modern coal mining have self-healing pattern with mining time;the self-healing capability of near-surface strata is relatively strong while the roof weak;water bearing selfhealing of near-surface strata is relatively high while the roof strata adjacent to mined coal beds low.Due to integrated time-lapse geophysical prospecting technology has extra time dimension which makes up the deficiency of static analysis of conventional geophysical methods,it can better highlight the dynamic changes of modern coal mining induced overburden strata and its water bearing conditions.
基金the National Natural Science Foundation of China (Grant No.51379066)the Fundamental Research Funds for the Central Universities (Grant No.2016B03514)+1 种基金the National Key Technology Support Program (Grant No.2015BAB07B05)the Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Techniques (Grant No.YK913007).
文摘The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.
基金provided by the National Natural Science Foundation of China(No.51374046)State Key Laboratory for Geo Mechanics and Deep Underground Engineering at China University of Mining&Technology(SKLGDUEK1420)
文摘The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological conditions or mining structures, a method of coupling FLAC3D with GIS was presented to calculate the spatial distribution of overburden strata failure in longwall coal mines. After building the spatio-temporal database from the calculation results of FLAC3D, the height of the mining-induced fractured zone in the overburden strata can be calculated by using the given height function. The results of case study show that the height of the fractured zone reached the maximum value at the face advance equal to about the panel width. The outcome of the work presented will be helpful in practice to improve safety in the production.