期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
利用Sentinel-2A多光谱成像仪与Landsat 8陆地成像仪影像进行普陀山岛植被分类效果比较 被引量:6
1
作者 章晓洁 邓艳芬 +2 位作者 张亚超 蒋芸芸 邱桔斐 《测绘通报》 CSCD 北大核心 2019年第10期97-100,共4页
卫星遥感技术可用于海岛资源调查。Sentinel-2A与Landsat 8两颗卫星都可免费提供空间分辨率较高的多光谱遥感影像,在海岛调查中的应用潜力较大。本文以浙江舟山普陀山岛为例开展了针对这两种影像在海岛植被分类中的应用效果的研究,分别... 卫星遥感技术可用于海岛资源调查。Sentinel-2A与Landsat 8两颗卫星都可免费提供空间分辨率较高的多光谱遥感影像,在海岛调查中的应用潜力较大。本文以浙江舟山普陀山岛为例开展了针对这两种影像在海岛植被分类中的应用效果的研究,分别利用Sentinel-2A多光谱成像仪(MSI)和Landsat 8陆地成像仪(OLI)影像基于最大似然法分类获得了该岛阔叶林、针阔混交林、针叶林、灌丛、草丛等植被及其他地物的分布情况,并进行了精度检验,结果表明MSI的总体分类精度略高于OLI。 展开更多
关键词 Sentinel-2A LANDSAT 8 遥感植被分类 最大似然法 总体分类精度
下载PDF
一种融合的青海湖水体面积遥感影像提取方法
2
作者 卢金晴 张思慧 +1 位作者 杨光 吴云龙 《城市勘测》 2024年第5期94-99,共6页
青海湖位于中国西北高原地区,是中国最大的高原内陆咸水湖,同时也是世界上海拔最高的湖泊之一,其水体面积的准确提取对湖泊生态环境管理至关重要。利用遥感技术,构造了一种将改进的归一化差异水体指数(Modified Normalized Difference W... 青海湖位于中国西北高原地区,是中国最大的高原内陆咸水湖,同时也是世界上海拔最高的湖泊之一,其水体面积的准确提取对湖泊生态环境管理至关重要。利用遥感技术,构造了一种将改进的归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)、增强型植被指数(Enhanced Vegetation Index,EVI)和监督分类这三种方法相融合的方法,以实现对青海湖水体面积的高精度提取。比较三种单一水体提取方法和融合方法的水体提取结果、总体分类精度(Overall Accuracy,OA)和Kappa系数(KappaCoefficient,Kappa),结果表明该融合方法对比三种单一方法的提取精度有显著的提升,总体分类精度最多提高了2.9284%,Kappa系数最多提高了0.3862,表明了该融合方法能够有效地提高青海湖水体面积提取的精度。 展开更多
关键词 青海湖 融合方法 水体提取 总体分类精度 Kappa系数
下载PDF
飞机机翼表面损伤的近红外高光谱识别
3
作者 刘青松 杜文静 +5 位作者 罗博 李凯歌 但有全 许罗鹏 杨秀锋 唐深兰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3069-3074,共6页
飞机表面损伤的检测和设备研究,对于飞行安全与运营效益具有重大的现实意义。光谱匹配技术是飞机表面损伤高光谱检测需要解决的关键技术之一。不同光谱匹配算法的识别精度常因研究对象而异。为了利用光谱匹配算法实现飞机样品损伤识别,... 飞机表面损伤的检测和设备研究,对于飞行安全与运营效益具有重大的现实意义。光谱匹配技术是飞机表面损伤高光谱检测需要解决的关键技术之一。不同光谱匹配算法的识别精度常因研究对象而异。为了利用光谱匹配算法实现飞机样品损伤识别,首先搭建了室内近红外高光谱飞机表面损伤检测系统,采集了参考样品和蒙皮样品两类样品的高光谱数据,并利用损伤像元光谱和无损像元光谱制作了两类像元的标准光谱。接着基于计算待测像元光谱与标准光谱相似度的匹配方法,先后采用光谱角(SA)、马氏距离(MD)、光谱信息散度(SID)、光谱相关系数(SCC)四类单一光谱匹配算法和六类组合光谱匹配算法进行两类样品的损伤识别。利用总体分类精度Pa和Kappa系数对上述光谱匹配算法的损伤识别结果进行精度评价。通过对SA、MD、SID、SCC单一算法的阈值参数优化,给出能够较好满足检测需求的合理阈值组。进一步,基于四类单一算法进行组合匹配算法设计,分别采用SA-MD、SA-SID、SA-SCC、MD-SID、MD-SCC和SID-SCC六类组合算法对两类飞机样品进行损伤识别。结果表明,相比单一匹配算法,组合算法的整体识别准确率相对较高。最后,分别给出适用于飞机样品损伤识别的最优单一匹配算法和组合算法,其中SCC算法和MD-SCC算法,对两类样品的损伤识别率分别可达95%以上和97.5%,可为外场飞机表面损伤的高光谱检测提供技术支撑。 展开更多
关键词 高光谱 飞机表面 损伤识别 光谱匹配 总分精度
下载PDF
基于多源数据协同的SVM岩性分类研究——以江尕勒萨依地区为例 被引量:2
4
作者 朱明永 李炳谦 +2 位作者 付翰泽 陈川 高猛 《铀矿地质》 CAS CSCD 2020年第4期288-292,317,共6页
研究区位于阿尔金北缘江尕勒萨依山前一带,自然条件恶劣,基础地质工作薄弱,难以开展大比例尺填图工作。文章充分发挥遥感技术的优势,深度挖掘有用信息,在Worldview-2与Landsat-8 OLI数据的协同处理基础上,通过支持向量机(Support Vector... 研究区位于阿尔金北缘江尕勒萨依山前一带,自然条件恶劣,基础地质工作薄弱,难以开展大比例尺填图工作。文章充分发挥遥感技术的优势,深度挖掘有用信息,在Worldview-2与Landsat-8 OLI数据的协同处理基础上,通过支持向量机(Support Vector Machine,简称SVM)对研究区岩性进行分类。结果表明,相比于单一原始影像,经协同处理的遥感影像分类精度高,总体分类精度83.22%,Kappa系数达到0.78,细化了各类地质体的展布位置,研究结果对艰险地区的区域地质调查工作具有一定的指导意义。 展开更多
关键词 协同 SVM 总体分类精度 Kappa系数
下载PDF
昆明市生态用地信息提取技术比较研究 被引量:1
5
作者 陈爱梅 李晓琳 张芳 《矿山测量》 2020年第3期96-100,共5页
以Landsat8影像为数据源,采用最大似然法、CART决策树分类法对昆明市生态用地信息进行提取。比较两种分类方法对不同生态用地信息提取的分类精度,结果表明:(1)CART决策树方法更适宜于耕地、未利用地、建设用地信息提取,且总体分类精度... 以Landsat8影像为数据源,采用最大似然法、CART决策树分类法对昆明市生态用地信息进行提取。比较两种分类方法对不同生态用地信息提取的分类精度,结果表明:(1)CART决策树方法更适宜于耕地、未利用地、建设用地信息提取,且总体分类精度高于最大似然法;(2)从地类的空间分布情况上看,CART决策树分类图像的结果多为面状,最大似然法分类结果地物分布细碎。总体来说不同信息提取方法具有各自的优势,在具体应用中,可根据目标地类的波谱特性,选择适宜的信息提取方法。 展开更多
关键词 最大似然法 CART决策树 生态用地 总体精度 昆明
下载PDF
Advanced Investigation of Remote Sensing to Geological Mapping of Zefreh Region in Central Iran
6
作者 Reza Mohammadizad Ramin Arfania 《Open Journal of Geology》 2017年第10期1509-1529,共21页
This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are ric... This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are rich sources of Earth’s surface information. In this study, the surface geological mappings of Zefreh region have been investigated through ASTER, OLI, and IRS-PAN remote sensing data. To prepare the geological map, preprocessing steps and reducing noises from data using MNF algorithm were firstly carried out. Then a set of processing algorithms and image classification methods are included;the band rationing, color composite and pixel classification based on maximum likelihood, spectral and sub-pixel classification methods of spectral angle mapper (SAM), spectral feature fitting (SFF), linear spectral differentiation (LSU), hill-shade images and automatic lineament extraction were used. Confusion matrix was formed for all classified images through control points were randomly selected from 1:25,000 map of the region to determine the accuracy of obtained results, which indicated the maximum accuracy (up to 90%) of output images. Comparing the results obtained from these methods with the map prepared by ground operations confirmed accuracy results. Finally, the surface geology and fault map of Zafreh region was produced by combining detected geological formations and tectonic lineaments. 展开更多
关键词 Zefreh REMOTE SENSING Image Processing GEOLOGICAL Mapping classification overall accuracy
下载PDF
High-resolution Remote Sensing of Textural Images for Tree Species Classification
7
作者 Wang Ni Peng Shikui Li Mingshi 《Chinese Forestry Science and Technology》 2012年第3期64-65,共2页
Remote sensing images show a very promising perspective for distinguishing tree species,especially those with the very high resolution ranging from 1 to 4 m.However,the traditional methodology for classifying land cov... Remote sensing images show a very promising perspective for distinguishing tree species,especially those with the very high resolution ranging from 1 to 4 m.However,the traditional methodology for classifying land cover types,solely depending on spectral features,while texture and other spatial information are neglected, has the weakness such as inadequately utilization of information,low accuracies of classification,etc. Considering to the texture differences among forest species,it is more important for spatial information description of high-resolution remote sensing image to improve the precision of textural features choosing.In this study,the factors to influence the nine textural features choosing were analyzed and the results showed that the moving window size was the main factor to affect the obtaining processes of textural features based on the gray level co-occurrence matrix(GLCM) method,and the imagery was then classified combining the maximum likelihood classification(MLC) method with the original spectral values and texture features.First,this study utilized a correlation analysis of the images from a principal component analysis.Second,through multiple information sources,including textual features derived from the data.For the high-resolution remote sensing image, the most proper moving window size was determined from 3×3 to 31×31.Classification of the major tree species throughout the study area (the SunYat-Sen Mausoleum in Nanjing) was undertaken using the MLC.Third,to aid forest research,classification accuracy was improved using the GLCM.According to correlations among textures and richness of the data,GLCM provided the best window size and textural parameters. Results indicated that the texture characteristics were add in the spectral characteristics to improve the precision of the results of the classification, 19×19 window for best window.The total precision can reach 66.322 6%,Kappa coefficient is 0.584 0.Each tree species has greatly improved accuracies of the classification.By the calc 展开更多
关键词 FOREST management tree species classification moving WINDOW textural feature overall accuracy GRAY level co-ocurrence matrix(GLCM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部