This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method ...This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method uses the sensitivity relation of transmissibility data through a least-squares algorithm and appropriate normalization of the extracted equations.The proposed transmissibility-based sensitivity equation produces a more significant number of equations than the sensitivity equations based on the frequency response function(FRF),which can estimate the structural parameters with higher accuracy.The abilities of the proposed method are assessed by using numerical data of a two-story two-bay frame model and a plate structure model.In evaluating different damage cases,the number,location,and stiffness reduction of the damaged elements and the severity of the simulated damage have been accurately identified.The reliability and stability of the presented method against measurement and modeling errors are examined using error-contaminated data.The parameter estimation results prove the method’s capabilities as an accurate model updating algorithm.展开更多
A MAGFET using an nc-Si/c-Si heterojunction as source and drain was fabricated by CMOS technology, using two ohm-contact electrodes as Hall outputs on double sides of the channel situated 0.7L from the source. The exp...A MAGFET using an nc-Si/c-Si heterojunction as source and drain was fabricated by CMOS technology, using two ohm-contact electrodes as Hall outputs on double sides of the channel situated 0.7L from the source. The experimental results show that when VDS = -7.0 V, the magnetic sensitivity of the single nc-Si/c-Si heterojunction magnetic metal oxide semiconductor field effect transistor (MAGFET) with an L : W ratio of 2 : 1 is 21.26 mV/T, and that with an L : W ratio of 4 : 1 is 13.88 mV/T. When the outputs of double nc-Si/c-Si heterojunction MAGFETs with an L : W ratio of 4 : 1 are in series, their magnetic sensitivity is 22.74 mV/T, which is an improvement of about 64% compared with that of a single nc-Si/c-Si heterojunction MAGFET.展开更多
文摘This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method uses the sensitivity relation of transmissibility data through a least-squares algorithm and appropriate normalization of the extracted equations.The proposed transmissibility-based sensitivity equation produces a more significant number of equations than the sensitivity equations based on the frequency response function(FRF),which can estimate the structural parameters with higher accuracy.The abilities of the proposed method are assessed by using numerical data of a two-story two-bay frame model and a plate structure model.In evaluating different damage cases,the number,location,and stiffness reduction of the damaged elements and the severity of the simulated damage have been accurately identified.The reliability and stability of the presented method against measurement and modeling errors are examined using error-contaminated data.The parameter estimation results prove the method’s capabilities as an accurate model updating algorithm.
基金Project supported by the National Natural Science Foundation of China (No.60676044)the Science and Technology Research Program of Heilongjiang Provincial Department of Education (No.11521215)
文摘A MAGFET using an nc-Si/c-Si heterojunction as source and drain was fabricated by CMOS technology, using two ohm-contact electrodes as Hall outputs on double sides of the channel situated 0.7L from the source. The experimental results show that when VDS = -7.0 V, the magnetic sensitivity of the single nc-Si/c-Si heterojunction magnetic metal oxide semiconductor field effect transistor (MAGFET) with an L : W ratio of 2 : 1 is 21.26 mV/T, and that with an L : W ratio of 4 : 1 is 13.88 mV/T. When the outputs of double nc-Si/c-Si heterojunction MAGFETs with an L : W ratio of 4 : 1 are in series, their magnetic sensitivity is 22.74 mV/T, which is an improvement of about 64% compared with that of a single nc-Si/c-Si heterojunction MAGFET.