Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme de...Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.展开更多
We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some...We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.展开更多
One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
文摘Wireless sensor network (WSN) requires robust and efficient communication protocols to minimise delay and save energy. The lifetime of WSN can be maximised by selecting proper medium access control (MAC) scheme depending on the contention level of the network. The throughput of WSN however reduces due to channel fading effects even with the proper design of MAC protocol. Hence this paper proposes a new MAC scheme for enabling packet transmission using cooperative multi-input multi-output (MIMO) utilising space time codes(STC) such as space time block code (STBC), space time trellis code (STTC) to achieve higher energy savings and lower delay by allowing nodes to transmit and receive information jointly. The performance of the proposed MAC protocol is evaluated in terms of transmission error probability, energy consumption and delay. Simulation results show that the proposed cooperative MIMO MAC protocol provides reliable and efficient transmission by leveraging MIMO diversity gains.
基金supported by the National Natural Science Foundation of China (No. 60832008)the Research Grants Council Joint Research Scheme National Natural Science Foundation of China (No. 60731160013)
文摘We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.
文摘多输入多输出(MIMO,Multiple Input Multiple Output)技术可以通过实现空分复用有效地提高无线系统的性能.提出了一个对于站点(station)和无线接入点(AP,Access Point)都装配有多天线的无线局域网的介质访问控制层(MAC,Medium Access Control)协议.此协议利用跨层优化设计的方法解决了将MIMO技术用于WLAN(Wireless Local Area Net-work)中存在的一些问题.例如,如何在传统的802.11协议中加入训练用的导频序列,以及如何实现数据的并行传输等等.随后,提出一个三维离散马尔可夫模型来分析此协议性能,并与理论值进行比较.最后的仿真结果说明此协议能有效的提高系统吞吐量.