In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compl...In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.展开更多
The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed paramete...The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.展开更多
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(11972152,11832009)the National Key R&D Program of China(2017YFB1102801)the Laboratory of Science and Technology on Integrated Logistics Support.
文摘In this paper,a tunable locally resonant metamaterial is proposed for low-frequency band gaps.The local resonator composed of two pairs of folded slender beams and a proof mass is designed based on the theory of compliant mechanism.The design optimization on geometric parameters is carried out to fulfil the quasi-zero-stiffness property.The locally resonant metamaterial is formed by periodically arranged unit cells,and the transmittance of longitudinal wave is studied through three aspects:numerical predictions,finite element simulations and experimental tests.The variation trends revealed by these three methods match well with one another:the band gap moves to lower frequency and both its depth and width get smaller and smaller with the increase of pre-compression(Δ).The band gap overlays the frequency range of 73.10–92.38 Hz and 16.78–19.49 Hz atΔ=0mm andΔ=10mm,respectively,providing a wide range of tunability.Besides,the ultralow-frequency band gap can be achieved asΔapproaches 10 mm.This study may provide an avenue for achieving the tunable ultralow-frequency locally resonant band gap.
基金supported by the National Key Research and Development Plan of China under Grant(2016YFB0900600XXX)
文摘The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.