Vortex shedding from a circular cylinder subjected to fortal oscillations at arbitrary angles(as shown in Fis. 1 for 0°<β<90°) with respect to the free stream is numerically investigated using the Nav...Vortex shedding from a circular cylinder subjected to fortal oscillations at arbitrary angles(as shown in Fis. 1 for 0°<β<90°) with respect to the free stream is numerically investigated using the Navier-Stokes equations. The emphasis of this study is put on revealing the complicated vortex structures and their evolution in the near wake. In the present study, a number of possible vortex modes are also numerically simulated, and a variety of physical phenomena are duplicated and even renewed numerically. A parameter map indicating the classification of preferred vortex modes is firstly given in the frequency-amplitude plane.展开更多
This paper presents numerical simulations of vortex-induced vibrations of a vertical riser which is sinusoidally excited at its top end in both one and two directions in still water.A computational fluid dynamics meth...This paper presents numerical simulations of vortex-induced vibrations of a vertical riser which is sinusoidally excited at its top end in both one and two directions in still water.A computational fluid dynamics method based on the strip theory is used.The riser’s responses to both top-end and two-end excitations are carefully examined.In low reduced velocity cases,the in-line vibrations consist of three components,the low-frequency oscillation,the first-natural-frequency vibration during the riser reversal,and the second-natural-frequency vibration due to vortex shedding.The sheared oscillatory flow along the span causes low-frequency oscillations in higher modes in the in-line direction,thus forming‘X’shaped,‘II’shaped,and‘O’shaped trajectories at various positions along the span when the riser is excited at its top end in one direction.In the presence of excitations in the other direction,more complex trajectories appear.展开更多
This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness i...This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.展开更多
A mixed lubrication model was established for piston skirt lubrication. The mathematical model developed in this paper incorporates governing equations of motion with average Reynolds equation. This model considers th...A mixed lubrication model was established for piston skirt lubrication. The mathematical model developed in this paper incorporates governing equations of motion with average Reynolds equation. This model considers the surfaceroughness and profile. The corresponding computer program can be used to calculate oscillatory motion of piston during the entire trajectory, which has the excellent convergence.In addition, a set of equipment, which adopt the laser induced fluorescent method, was developed to measure the oil film thickness between the piston and the bore.展开更多
Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper p...Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper presents some aspects on the working process of a sieve, made of perforated sheet and having an outer conical surface with oscillatory circular motion (alternative) on the horizontal. Results are presented for some experimental researches on the movement of material on the sieve, for various kinematical parameters of the sieve (amplitude and oscillation frequency). A conical sieve, suspended at the upper and lower in three points, was tested for screening of rapeseeds in order to estimate the influence of oscillation frequency on the screening process. Curves were drawn for separation intensity on the sieve generating line, and by regression analysis with normal distribution law were determined the equation coefficients and the correlation with experimental data. Movement of material on the sieve and its working process, in general, was appreciated by means of the peak position of distribution curve depending on the oscillation frequency of the sieve, considering that the normal distribution law correlates very well the data obtained by experiments.展开更多
This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is t...This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing's total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing's maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing's total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.展开更多
A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To...A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.展开更多
文摘Vortex shedding from a circular cylinder subjected to fortal oscillations at arbitrary angles(as shown in Fis. 1 for 0°<β<90°) with respect to the free stream is numerically investigated using the Navier-Stokes equations. The emphasis of this study is put on revealing the complicated vortex structures and their evolution in the near wake. In the present study, a number of possible vortex modes are also numerically simulated, and a variety of physical phenomena are duplicated and even renewed numerically. A parameter map indicating the classification of preferred vortex modes is firstly given in the frequency-amplitude plane.
基金This work is supported by the National Natural Science Foundation of China(51490675,51379125,11432009,51579145)Chang Jiang Scholars Program(T2014099),Shanghai Excellent Academic Leaders Program(17XD1402300)+2 种基金Program for Professor of Special Appoint-ment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovati ve Special Pro ject of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for doctoral student,to which the authors are most grateful.
文摘This paper presents numerical simulations of vortex-induced vibrations of a vertical riser which is sinusoidally excited at its top end in both one and two directions in still water.A computational fluid dynamics method based on the strip theory is used.The riser’s responses to both top-end and two-end excitations are carefully examined.In low reduced velocity cases,the in-line vibrations consist of three components,the low-frequency oscillation,the first-natural-frequency vibration during the riser reversal,and the second-natural-frequency vibration due to vortex shedding.The sheared oscillatory flow along the span causes low-frequency oscillations in higher modes in the in-line direction,thus forming‘X’shaped,‘II’shaped,and‘O’shaped trajectories at various positions along the span when the riser is excited at its top end in one direction.In the presence of excitations in the other direction,more complex trajectories appear.
文摘This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.
文摘A mixed lubrication model was established for piston skirt lubrication. The mathematical model developed in this paper incorporates governing equations of motion with average Reynolds equation. This model considers the surfaceroughness and profile. The corresponding computer program can be used to calculate oscillatory motion of piston during the entire trajectory, which has the excellent convergence.In addition, a set of equipment, which adopt the laser induced fluorescent method, was developed to measure the oil film thickness between the piston and the bore.
文摘Removal of foreign bodies from seed mixtures, or their calibration for use as planting material, as well as fraction classification of granular materials requires screening surfaces with vibratory motion. This paper presents some aspects on the working process of a sieve, made of perforated sheet and having an outer conical surface with oscillatory circular motion (alternative) on the horizontal. Results are presented for some experimental researches on the movement of material on the sieve, for various kinematical parameters of the sieve (amplitude and oscillation frequency). A conical sieve, suspended at the upper and lower in three points, was tested for screening of rapeseeds in order to estimate the influence of oscillation frequency on the screening process. Curves were drawn for separation intensity on the sieve generating line, and by regression analysis with normal distribution law were determined the equation coefficients and the correlation with experimental data. Movement of material on the sieve and its working process, in general, was appreciated by means of the peak position of distribution curve depending on the oscillation frequency of the sieve, considering that the normal distribution law correlates very well the data obtained by experiments.
基金supports from the National ‘‘the eleventh-five years’’ Projects of Science and Technology under contract (No. D09-0109-06-004) of ChinaInnovative Team Program of Universities in Shanghai of Shanghai Municipality Education Commission (No. B-48-0109-09-002) of China
文摘This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing's total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing's maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing's total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.
基金supported by the National Natural Science Foundation of China(Grant No.51279104)a Research Project on High-Technology Ships by the Ministry of Industry and Information Technology
文摘A Deep Draft Semi-submersible (DDS) under certain flow conditions could be subjected to Vortex-Induced Motions (VIM), which significantly influences the loads on and life fatigue of the moorings and the risers. To investigate the VIM of a DDS with four rectangular section columns in waves coupled with a uniform current, a numerical study using the computational fluid dynamics (CFD) method was conducted. The issues of the VIM of multi-column floaters can be con','eniently converted to the issues of oscillating cylinders in fluid cross flows. This paper looks into the CFD numerical simulation of infinite cylinders having rectangular sections in a two-dimensional sinusoidal time- dependent flow field coupled with a uniform current. The resulted hydrodynamic forces and motion responses in different oscillatory flows plus currents both aligned in the same direction for the incidence of 135° of the DDS relative to the flow are compared with the ones in current only cases. The results show that the VIM response of this geometric arrangement of a DDS with four rectangular columns in a current combined with oscillatory flows is more evident than that in the current only case. The oscillatory flows and waves have the significant influence on the VIM response, forces and trajectory, in-plane motions of the DDS.