以8 mm TC4钛合金厚板为实验材料,采用手工钨极气体保护焊(TIG)和熔化极气体保护焊(MIG)研究了各自实验条件下的焊缝成形、微观组织、力学性能和拉伸断口的异同。结果表明,TIG、MIG焊焊缝均成形美观,但MIG焊焊接速度更快;母材为α+β双...以8 mm TC4钛合金厚板为实验材料,采用手工钨极气体保护焊(TIG)和熔化极气体保护焊(MIG)研究了各自实验条件下的焊缝成形、微观组织、力学性能和拉伸断口的异同。结果表明,TIG、MIG焊焊缝均成形美观,但MIG焊焊接速度更快;母材为α+β双相组织,MIG焊热影响区晶粒比TIG焊更均匀;二者焊缝均由粗大柱状晶组成,组织均为α’马氏体+β相;手工TIG焊接头强度系数达到97.3%,摆动电弧MIG焊接头强度系数为93.9%,摆动电弧MIG焊强度低的原因在于焊缝中存在冶金型气孔缺陷。展开更多
文摘以8 mm TC4钛合金厚板为实验材料,采用手工钨极气体保护焊(TIG)和熔化极气体保护焊(MIG)研究了各自实验条件下的焊缝成形、微观组织、力学性能和拉伸断口的异同。结果表明,TIG、MIG焊焊缝均成形美观,但MIG焊焊接速度更快;母材为α+β双相组织,MIG焊热影响区晶粒比TIG焊更均匀;二者焊缝均由粗大柱状晶组成,组织均为α’马氏体+β相;手工TIG焊接头强度系数达到97.3%,摆动电弧MIG焊接头强度系数为93.9%,摆动电弧MIG焊强度低的原因在于焊缝中存在冶金型气孔缺陷。