随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高...随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。展开更多
Equalizers are widely used in digital communication systems for corrupted or time varying channels. To overcome performance decline for noisy and nonlinear channels, many kinds of neural network models have been used ...Equalizers are widely used in digital communication systems for corrupted or time varying channels. To overcome performance decline for noisy and nonlinear channels, many kinds of neural network models have been used in nonlinear equalization. In this paper, we propose a new nonlinear channel equalization, which is structured by wavelet neural networks. The orthogonal least square algorithm is applied to update the weighting matrix of wavelet networks to form a more compact wavelet basis unit, thus obtaining good equalization performance. The experimental results show that performance of the proposed equalizer based on wavelet networks can significantly improve the neural modeling accuracy and outperform conventional neural network equalization in signal to noise ratio and channel non-linearity.展开更多
OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ...OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ,该算法使用 AF CM方法对数据进行聚类 ,并获取基函数的平滑参数 ,然后使用 OL S方法从聚类结果中选取网络中心。利用实测的 4类飞机目标数据对其进行性能检验 ,试验结果验证了该训练算法可提高网络的训练速度 ,缩小网络规模 ,提高网络的分类能力。展开更多
线路覆冰是威胁输电线路安全的最主要因素之一。在实时实验数据和力学研究的基础上,提出了一种基于BP神经网络的覆冰厚度及重量的预测模型。预测模型以输电线路所处的温度、湿度、风向等为输入量,以覆冰厚度为输出量,网络隐含层单元个...线路覆冰是威胁输电线路安全的最主要因素之一。在实时实验数据和力学研究的基础上,提出了一种基于BP神经网络的覆冰厚度及重量的预测模型。预测模型以输电线路所处的温度、湿度、风向等为输入量,以覆冰厚度为输出量,网络隐含层单元个数与中心向量采用正交最小二乘法(orthogonal least squares,OLS)。在此基础上再通过专家软件来分析覆冰情况,给出了预测及预警信息。仿真结果表明,符合预期效果,实现了对覆冰载荷在线监测和覆冰厚度的预测,将其误差控制在一个较小的范围。展开更多
文摘随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。
基金the Tsinghua University Research Foundation the Excellent Young Teacher Program of the Ministry of Education and the Returnee Science Research Startup Fund of the Ministry of Education of China
文摘Equalizers are widely used in digital communication systems for corrupted or time varying channels. To overcome performance decline for noisy and nonlinear channels, many kinds of neural network models have been used in nonlinear equalization. In this paper, we propose a new nonlinear channel equalization, which is structured by wavelet neural networks. The orthogonal least square algorithm is applied to update the weighting matrix of wavelet networks to form a more compact wavelet basis unit, thus obtaining good equalization performance. The experimental results show that performance of the proposed equalizer based on wavelet networks can significantly improve the neural modeling accuracy and outperform conventional neural network equalization in signal to noise ratio and channel non-linearity.
文摘OL S训练方法应用在径向基 (RBF )神经网络里时 ,存在当训练数据量很大时速度很慢的问题 ,并且 OL S方法不能自动确定基函数的平滑参数。本文针对此问题提出了一种基于快速模糊 C-均值算法 (A FCM)与 OL S算法相结合的 AF OL S训练算法 ,该算法使用 AF CM方法对数据进行聚类 ,并获取基函数的平滑参数 ,然后使用 OL S方法从聚类结果中选取网络中心。利用实测的 4类飞机目标数据对其进行性能检验 ,试验结果验证了该训练算法可提高网络的训练速度 ,缩小网络规模 ,提高网络的分类能力。
文摘线路覆冰是威胁输电线路安全的最主要因素之一。在实时实验数据和力学研究的基础上,提出了一种基于BP神经网络的覆冰厚度及重量的预测模型。预测模型以输电线路所处的温度、湿度、风向等为输入量,以覆冰厚度为输出量,网络隐含层单元个数与中心向量采用正交最小二乘法(orthogonal least squares,OLS)。在此基础上再通过专家软件来分析覆冰情况,给出了预测及预警信息。仿真结果表明,符合预期效果,实现了对覆冰载荷在线监测和覆冰厚度的预测,将其误差控制在一个较小的范围。