A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and ro...Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and routing) plus an interface mechanism to allow the two algorithms to collaborate in a master-slave fashion,with the distribution algorithm driving the routing algorithm. At second,we describe the proposed improved orthogonal genetic algorithm for solving giving problem detailedly. Finally,the examples suggest that this proposed approach is feasible,correct and valid.展开更多
In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach sy...In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.展开更多
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
文摘Aim to the manufacturing supply chain optimization problem with time windows,presents an improved orthogonal genetic algorithm to solve it. At first,we decompose this problem into two sub-problems (distribution and routing) plus an interface mechanism to allow the two algorithms to collaborate in a master-slave fashion,with the distribution algorithm driving the routing algorithm. At second,we describe the proposed improved orthogonal genetic algorithm for solving giving problem detailedly. Finally,the examples suggest that this proposed approach is feasible,correct and valid.
基金Supported by the National Natural Science Foundation of China(70272002) .
文摘In order to solve the complex optimization problem dealing with uncertain phenomenon effectively, this paper presents a probability simulation optimization approach using orthogonal genetic algorithm. This approach synthesizes the computer simulation technology, orthogonal genetic algorithm and statistical test method faultlessly, which can solve complex optimization problem effectively. In this paper, the author gives the correlative conception of probability simulation optimization and describes the probability simulation optimization approach using orthogonal genetic algorithm in detail. Theoretically speaking, it has a strong rationality and maneuverability that can apply probability method in solving the complex optimization problems with uncertain phenomenon. In demonstration, the optimization performance of this method is better than other traditional methods. Simulation resuh suggests that the approach referred to this paper is feasible, correct and valid.