本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,versi...本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,version2.0)。在经纬网格坐标系下,新的动力框架与LICOM2.0原有的动力框架模拟结果完全一致。基于新的动力框架,海洋模式可采用能够准确描述北冰洋地形的三极网格,克服了LICOM2.0经纬网格版本必须将北极点处理为孤岛的缺陷,从而显著改进了模式对于北冰洋环流和北大西洋经圈翻转流函数(AMOC)的模拟能力。此外,引进三极网格还可以避免模式网格距随纬度增加而急剧减小带来的计算不稳定,在LICOM2.0的三极网格版本中,模式不需要采用任何空间滤波方案仍然能够保证计算的稳定性,从而与LICOM2.0的经纬网格版本相比,极大地提高了模式的并行效率,这一点在当水平分辨率提高到0.1度时表现得尤为明显,海洋模式的并行加速比可以从经纬网格版本的5.8左右提高到三极网格版本的15.0左右。展开更多
This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the ...This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the complicated boundary figures, the great disparitybetween length and width of computational domain, etc. , orthogonal boundary-filled grid was used.The irregular domain in physical plane was transformed into a rectangular domain in a transformedplane, and the depth-averaged momentum equations and mass equation were given and discretized basedon the alternating direction implicit finite difference scheme in curvilinear coordinates. Theapplication of the presented method was illustrated by an example of analyzing the Yangtze River inthe vicinity of Nanjing city. A fair agreement between the measured data and computed resultsdemonstrates the validity of the developed method.展开更多
Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY mode...Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.展开更多
It is explored that the line integral is a path independent in two or three arbitrary dimensional orthogonal curvilinear coordinate systems, which is based on the integral condition with the path independent in two or...It is explored that the line integral is a path independent in two or three arbitrary dimensional orthogonal curvilinear coordinate systems, which is based on the integral condition with the path independent in two or three dimensional rectangular coordinate systems. Firstly, according to the coordinate transformation, the condition that the line integral is the path independent in the polar coordinate system is obtained easily from the Green's theorem in two-dimensional rectangular coordinate system and the condition is extended to arbitrary two-dimension orthogonal curvilinear coordinates. Secondly, through the coordinate transformation relationship and the area projection method, the Stokes formula in three-dimensional rectangular coordinate system is promoted to the spherical coordinate system and cylindrical coordinate system, and the condition that the line integral is a path independent is obtained. Furthermore, the condition is extended to arbitrary three-dimension orthogonal curvilinear coordinates. Lastly, the conclusions are made.展开更多
文摘本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,version2.0)。在经纬网格坐标系下,新的动力框架与LICOM2.0原有的动力框架模拟结果完全一致。基于新的动力框架,海洋模式可采用能够准确描述北冰洋地形的三极网格,克服了LICOM2.0经纬网格版本必须将北极点处理为孤岛的缺陷,从而显著改进了模式对于北冰洋环流和北大西洋经圈翻转流函数(AMOC)的模拟能力。此外,引进三极网格还可以避免模式网格距随纬度增加而急剧减小带来的计算不稳定,在LICOM2.0的三极网格版本中,模式不需要采用任何空间滤波方案仍然能够保证计算的稳定性,从而与LICOM2.0的经纬网格版本相比,极大地提高了模式的并行效率,这一点在当水平分辨率提高到0.1度时表现得尤为明显,海洋模式的并行加速比可以从经纬网格版本的5.8左右提高到三极网格版本的15.0左右。
文摘This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the complicated boundary figures, the great disparitybetween length and width of computational domain, etc. , orthogonal boundary-filled grid was used.The irregular domain in physical plane was transformed into a rectangular domain in a transformedplane, and the depth-averaged momentum equations and mass equation were given and discretized basedon the alternating direction implicit finite difference scheme in curvilinear coordinates. Theapplication of the presented method was illustrated by an example of analyzing the Yangtze River inthe vicinity of Nanjing city. A fair agreement between the measured data and computed resultsdemonstrates the validity of the developed method.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 50179015, 59879009, 50221903)
文摘Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.
基金Funded by the Natural Science Foundation Project of CQCSTC(No.cstc2012jj A50018)the Basic Research of Chongqing Municipal Education Commission(No.KJ120631)the Science Research Foundation Project of CQNU(No.16XYY31)
文摘It is explored that the line integral is a path independent in two or three arbitrary dimensional orthogonal curvilinear coordinate systems, which is based on the integral condition with the path independent in two or three dimensional rectangular coordinate systems. Firstly, according to the coordinate transformation, the condition that the line integral is the path independent in the polar coordinate system is obtained easily from the Green's theorem in two-dimensional rectangular coordinate system and the condition is extended to arbitrary two-dimension orthogonal curvilinear coordinates. Secondly, through the coordinate transformation relationship and the area projection method, the Stokes formula in three-dimensional rectangular coordinate system is promoted to the spherical coordinate system and cylindrical coordinate system, and the condition that the line integral is a path independent is obtained. Furthermore, the condition is extended to arbitrary three-dimension orthogonal curvilinear coordinates. Lastly, the conclusions are made.