This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur insid...This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur inside the pore channels or on the external surface,depending on the size of the organometallic complex.When the modification occurs on the external surface,it results in a decrease of the pore entrance,which will lead in turn to a modification of the sorption properties of the zeolite,by decreasing the rate of the adsorption(mainly by a kinetic control).Such a material can be also used in catalysis,because the external acid sites,which are responsible for side-reactions,have been removed upon grafting.When small organometallic complexes are used,they can fill the channels and cages of the zeolite and react with internal hydroxyl groups.Due to the high acidity of zeolites,the reaction occurs very easily(for example at-100℃ on faujasite),in contrast to what is observed on the external surface,therefore leading to high metal loadings.In that case,the modification of the sorption properties will be mainly related to a thermodynamic control.The resulting materials can be useful in catalysis,by combining the activity of the organometallic complex and properties(for example shape-selectivity) of the zeolite.Modification of mesoporous molecular sieves occurs always in the pores and results in altering of the sorption properties of the solid,by changing the interaction type between the sorbent and the sorbate.For example the sorption isotherm of alkanes is changed from type II to type III according to the IUPAC nomenclature.展开更多
We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis[2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm,which ...We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis[2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm,which was attributed to the moderate energy( π–π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(Bpy)_2q in the toluene solution showed a peak at 518 nm. This material shows thermal stability up to300 ℃. The structure of the device is ITO/F4-TCNQ(1 nm)/α-NPD(35 nm)/Al(Bpy)2q(35 nm)/ BCP(6 nm)/Alq3(28 nm)/Li F(1 nm)/Al(150 nm). This device exhibited a luminescence peak at 515 nm(CIE coordinates, xD0.32,yD0.49). The maximum luminescence of the device was 214 cd/m^2 at 21 V. The maximum current efficiency of OLED was 0.12 cd/A at 13 V and the maximum power efficiency was 0.03 lm/W at 10 V.展开更多
A new electroluminescent material tris- [5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material AI(5-Clq)3 in toluene showed absorption maxima at 385 nm which was at...A new electroluminescent material tris- [5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material AI(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of AI(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 ℃. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / AI(5-Clq)3 (30 nm) / BCP (6 nm)/ Alq3 (30 nm) / LiF (1 nm) / A1 (150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x = 0.39, y = 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.展开更多
文摘This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur inside the pore channels or on the external surface,depending on the size of the organometallic complex.When the modification occurs on the external surface,it results in a decrease of the pore entrance,which will lead in turn to a modification of the sorption properties of the zeolite,by decreasing the rate of the adsorption(mainly by a kinetic control).Such a material can be also used in catalysis,because the external acid sites,which are responsible for side-reactions,have been removed upon grafting.When small organometallic complexes are used,they can fill the channels and cages of the zeolite and react with internal hydroxyl groups.Due to the high acidity of zeolites,the reaction occurs very easily(for example at-100℃ on faujasite),in contrast to what is observed on the external surface,therefore leading to high metal loadings.In that case,the modification of the sorption properties will be mainly related to a thermodynamic control.The resulting materials can be useful in catalysis,by combining the activity of the organometallic complex and properties(for example shape-selectivity) of the zeolite.Modification of mesoporous molecular sieves occurs always in the pores and results in altering of the sorption properties of the solid,by changing the interaction type between the sorbent and the sorbate.For example the sorption isotherm of alkanes is changed from type II to type III according to the IUPAC nomenclature.
文摘We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis[2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm,which was attributed to the moderate energy( π–π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(Bpy)_2q in the toluene solution showed a peak at 518 nm. This material shows thermal stability up to300 ℃. The structure of the device is ITO/F4-TCNQ(1 nm)/α-NPD(35 nm)/Al(Bpy)2q(35 nm)/ BCP(6 nm)/Alq3(28 nm)/Li F(1 nm)/Al(150 nm). This device exhibited a luminescence peak at 515 nm(CIE coordinates, xD0.32,yD0.49). The maximum luminescence of the device was 214 cd/m^2 at 21 V. The maximum current efficiency of OLED was 0.12 cd/A at 13 V and the maximum power efficiency was 0.03 lm/W at 10 V.
文摘A new electroluminescent material tris- [5-choloro-8-hydroxyquinoline] aluminum has been synthesized and characterized. Solution of this material AI(5-Clq)3 in toluene showed absorption maxima at 385 nm which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of AI(5-Clq)3 in toluene solution showed a peak at 522 nm. This material shows thermal stability up to 400 ℃. The structure of the device is ITO/0.4 wt%F4-TCNQ doped α-NPD (35 nm) / AI(5-Clq)3 (30 nm) / BCP (6 nm)/ Alq3 (30 nm) / LiF (1 nm) / A1 (150 nm). This device exhibited a luminescence peak at 585 nm (CIE coordinates, x = 0.39, y = 0.50). The maximum luminescence of the device was 920 Cd/m2 at 25 V. The maximum current efficiency of OLED was 0.27 Cd/A at 20 V and maximum power efficiency was 0.04 lm/W at 18 V.