To perform a systematic survey on the occurrence and removal of micropollutants during municipal wastewater treatment, 943 semi-volatile organic chemicals in 32 wastewater samples including influents of secondary trea...To perform a systematic survey on the occurrence and removal of micropollutants during municipal wastewater treatment, 943 semi-volatile organic chemicals in 32 wastewater samples including influents of secondary treatments, secondary effluents and final effluents(effluents of advanced treatments), which were collected from seven full-scale municipal wastewater treatment plants(MWTPs) in China, were examined by gas chromatography-mass spectrometry(GC-MS) coupled with an automated identification and quantification system with a database(AIQS-DB). In total, 196 and 145 chemicals were detected in secondary and final effluents, respectively. The majority of the total concentrations(average removal efficiency, 87.0%±5.9%) of the micropollutants were removed during secondary treatments. However, advanced treatments achieved different micropollutant removal extents from secondary effluents depending on the different treatment processes employed. Highly variable removal efficiencies of total concentrations(32.7%–99.3%) were observed among the different advanced processes. Among them,ozonation-based processes could remove 70.0%–80.9% of the total concentrations of studied micropollutants. The potentially harmful micropollutants, based on their detection frequency and concentration in secondary and final effluents, were polycyclic aromatic hydrocarbons(PAHs)(2-methylnaphthalene, fluoranthene, pyrene, naphthalene and phenanthrene), phosphorus flame retardants(tributyl phosphate(TBP), tris(2-chloroethyl)phosphate(TCEP) and tris(1,3-dichloro-2-propyl) phosphate(TDCP)), phthalates(bis(2-ethylhexyl)phthalate(DEHP)), benzothiazoles(benzothiazole,2-(methylthio)-benzothiazol, and 2(3H)-benzothiazolone) and phenol. This study indicated that the presence of considerable amounts of micropollutants in secondary effluent creates the need for suitable advanced treatment before their reuse.展开更多
Organic micropollutants,with high toxicity and environmental concern,are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD),biochemical oxygen demand (B...Organic micropollutants,with high toxicity and environmental concern,are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD),biochemical oxygen demand (BOD),or total organic carbon (TOC)),and few has been known for their behaviors in different treatment processes.In this study,occurrence and removal of 17 organochlorine pesticides (OCPs),16 polycyclic aromatic hydrocarbons (PAHs),and technical 4-nonylphenol (4-NP) in landfill leachate in a comb...展开更多
A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslin...A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslinking reaction and found to possess a high specific surface area of 1149.7 m^2· g^-1, a small particle size of 50 μm to 100 μm, and a saturation magnetization as high as 8 emu.g1. W150 was used to eliminate nitrofurazone (NFZ) and oxytetracycline (OTC) from drinking water compared with commercial adsorbents XAD-4 and F400D. The adsorption kinetics of NFZ and OTC onto the three adsorbents well fitted the pseudo-second-order equation (r 〉 0.972), and the adsorption isotherms were all well described by the Freundlich equation (r 〉 0.851). Results showed that the reduction in adsorbent size and the enlargement in sorbent pores both accelerated adsorption. Moreover, the effect of particle size on adsorption was more significant than that of pore width. Given that the smallest particle size and the highest specific surface area were possessed by W150, it had the fastest adsorption kinetics and largest adsorption capacity for NFZ (180 mg·g-1) and OTC (200mg·g- 1). For the adsorbents with dominant micropores, the sorption of large-sized adsorbates decreased because of the inaccessible micropores. The solution pH and ionic strength also influenced adsorption.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China(No.2017ZX07106005)
文摘To perform a systematic survey on the occurrence and removal of micropollutants during municipal wastewater treatment, 943 semi-volatile organic chemicals in 32 wastewater samples including influents of secondary treatments, secondary effluents and final effluents(effluents of advanced treatments), which were collected from seven full-scale municipal wastewater treatment plants(MWTPs) in China, were examined by gas chromatography-mass spectrometry(GC-MS) coupled with an automated identification and quantification system with a database(AIQS-DB). In total, 196 and 145 chemicals were detected in secondary and final effluents, respectively. The majority of the total concentrations(average removal efficiency, 87.0%±5.9%) of the micropollutants were removed during secondary treatments. However, advanced treatments achieved different micropollutant removal extents from secondary effluents depending on the different treatment processes employed. Highly variable removal efficiencies of total concentrations(32.7%–99.3%) were observed among the different advanced processes. Among them,ozonation-based processes could remove 70.0%–80.9% of the total concentrations of studied micropollutants. The potentially harmful micropollutants, based on their detection frequency and concentration in secondary and final effluents, were polycyclic aromatic hydrocarbons(PAHs)(2-methylnaphthalene, fluoranthene, pyrene, naphthalene and phenanthrene), phosphorus flame retardants(tributyl phosphate(TBP), tris(2-chloroethyl)phosphate(TCEP) and tris(1,3-dichloro-2-propyl) phosphate(TDCP)), phthalates(bis(2-ethylhexyl)phthalate(DEHP)), benzothiazoles(benzothiazole,2-(methylthio)-benzothiazol, and 2(3H)-benzothiazolone) and phenol. This study indicated that the presence of considerable amounts of micropollutants in secondary effluent creates the need for suitable advanced treatment before their reuse.
基金the National Natural Science Foundation of China (No.50538090)the National Basic Research Program (973) of China (No.2007CB407301)ST Program of Beijing Municipality (No.D0706007040291-01).
文摘Organic micropollutants,with high toxicity and environmental concern,are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD),biochemical oxygen demand (BOD),or total organic carbon (TOC)),and few has been known for their behaviors in different treatment processes.In this study,occurrence and removal of 17 organochlorine pesticides (OCPs),16 polycyclic aromatic hydrocarbons (PAHs),and technical 4-nonylphenol (4-NP) in landfill leachate in a comb...
文摘A rapid and effective method based on a novel permanent magnetic hypercrosslinked resin W150 was proposed for the removal of organic micropollutants in drinking water. W150 was prepared by suspension and post-crosslinking reaction and found to possess a high specific surface area of 1149.7 m^2· g^-1, a small particle size of 50 μm to 100 μm, and a saturation magnetization as high as 8 emu.g1. W150 was used to eliminate nitrofurazone (NFZ) and oxytetracycline (OTC) from drinking water compared with commercial adsorbents XAD-4 and F400D. The adsorption kinetics of NFZ and OTC onto the three adsorbents well fitted the pseudo-second-order equation (r 〉 0.972), and the adsorption isotherms were all well described by the Freundlich equation (r 〉 0.851). Results showed that the reduction in adsorbent size and the enlargement in sorbent pores both accelerated adsorption. Moreover, the effect of particle size on adsorption was more significant than that of pore width. Given that the smallest particle size and the highest specific surface area were possessed by W150, it had the fastest adsorption kinetics and largest adsorption capacity for NFZ (180 mg·g-1) and OTC (200mg·g- 1). For the adsorbents with dominant micropores, the sorption of large-sized adsorbates decreased because of the inaccessible micropores. The solution pH and ionic strength also influenced adsorption.