Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized...Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized using XRD,SEM,FT-IR and UV/Vis spectroscopy.Moreover,the utilization of the MOF films as sensitizers was probed in bespoke Graetzel type liquid junction solar cells.The constructed cell performance revealed an I_(sc) of 1.16 mA cm^(–2),Vocof 0.63 V,FF of 0.33,and E_(ff) of 0.42%.Further,pumpprobe transient laser spectroscopy was performed to investigate the energy and charge transfer dynamics of the MOFs/TiO_2 NTs interface.The results indicated 86% injection efficiency.The ultrafast pump-probe spectroscopy allows the investigation of this process and the differences between MOFs.It also showed that the relaxation of the MOF chromophores is in competition with electron injection in the Ti O2 motif.Thus this study provides a new insight into electron transfer from photoexcited metal-organic frameworks(MOFs) into titanium dioxide.展开更多
Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dih...Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ- (OH)2) in the DBSQ(OH)2:[6,6]-phenyl-Cel-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.展开更多
基金funded by the Science and Technology Development Fund in Egypt (STDF),project number 12323
文摘Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized using XRD,SEM,FT-IR and UV/Vis spectroscopy.Moreover,the utilization of the MOF films as sensitizers was probed in bespoke Graetzel type liquid junction solar cells.The constructed cell performance revealed an I_(sc) of 1.16 mA cm^(–2),Vocof 0.63 V,FF of 0.33,and E_(ff) of 0.42%.Further,pumpprobe transient laser spectroscopy was performed to investigate the energy and charge transfer dynamics of the MOFs/TiO_2 NTs interface.The results indicated 86% injection efficiency.The ultrafast pump-probe spectroscopy allows the investigation of this process and the differences between MOFs.It also showed that the relaxation of the MOF chromophores is in competition with electron injection in the Ti O2 motif.Thus this study provides a new insight into electron transfer from photoexcited metal-organic frameworks(MOFs) into titanium dioxide.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 61604093), the Shanghai Pujiang Program (16PJ1403300), the Natural Science Foundation of Shanghai (16ZR1411000), the Science and Technology Commission of Shanghai Municipality Program (17DZ2281700), and the Shanghai Software and integrated circuit industry development special funds (170401).
文摘Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ- (OH)2) in the DBSQ(OH)2:[6,6]-phenyl-Cel-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.