The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and ...The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and the Late Paleozoic carbonate rocks.Three types of mineralization including skarn type,altered granite type and quartz vein veinlet type orebodies have been observed.In this study,the 40Ar 39Ar age of hydrothermal muscovite coexisting with copper mineralization in the altered granite type orebody formed near the unconformity interface is determined by step-heating technology using CO2 laser.The plateau age,isochron age,and inverse isochron age of muscovite are(147.39±0.94)Ma,(147.2±1.5)Ma,and(147.1±1.5)Ma,respectively.These ages are almost identical to the ages of ore-related granite and other mineralization types in the Zhuxi W(Cu)deposit,indicating that the Cu mineralizations occurred at the shallow depth and near the unconformity interface are contemporaneous during the Late Jurassic.This further suggested that the acompanied W and Cu mineralization in the Zhuxi W(Cu)deposit which may be controlled by the magma source is enriched in both W and Cu.展开更多
We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. T...We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples(Eu/Eu*=1.0-6.7, Y/Ho=20.7-55.1). These REE characteristics are similar to those of Sedex type massive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.展开更多
基金Project(41873059)supported by the National Natural Science Foundation of ChinaProject(JGMEDB [2017]78)supported by the Jiangxi Geological and Mineral Exploration and Development Bureau Foundation,China+2 种基金Project(2011BAB04B02)supported by the National Science and Technology Support Plan Project,ChinaProject(201411035)supported by the Welfare Research Program of Ministry of Land and Resources,ChinaProject(20150013)supported by Jiangxi Provincial Geological Exploration Fund Management Center,China
文摘The Zhuxi W(Cu)skarn deposit,the world’s largest tungsten deposit is newly discovered in Jingdezhen city,northeastern Jiangxi province,China.It mainly occurs near the contact zone between the Yanshanian granites and the Late Paleozoic carbonate rocks.Three types of mineralization including skarn type,altered granite type and quartz vein veinlet type orebodies have been observed.In this study,the 40Ar 39Ar age of hydrothermal muscovite coexisting with copper mineralization in the altered granite type orebody formed near the unconformity interface is determined by step-heating technology using CO2 laser.The plateau age,isochron age,and inverse isochron age of muscovite are(147.39±0.94)Ma,(147.2±1.5)Ma,and(147.1±1.5)Ma,respectively.These ages are almost identical to the ages of ore-related granite and other mineralization types in the Zhuxi W(Cu)deposit,indicating that the Cu mineralizations occurred at the shallow depth and near the unconformity interface are contemporaneous during the Late Jurassic.This further suggested that the acompanied W and Cu mineralization in the Zhuxi W(Cu)deposit which may be controlled by the magma source is enriched in both W and Cu.
基金supported by the National 973 Program of China (No. 2012CB416706)
文摘We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples(Eu/Eu*=1.0-6.7, Y/Ho=20.7-55.1). These REE characteristics are similar to those of Sedex type massive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.