Macroscopic supramolecular assembly(MSA)has been a recent progress in supramolecular chemistry.MSA mainly focuses on studies of the building blocks with a size beyond ten micrometers and the non-covalent interactions ...Macroscopic supramolecular assembly(MSA)has been a recent progress in supramolecular chemistry.MSA mainly focuses on studies of the building blocks with a size beyond ten micrometers and the non-covalent interactions between these interactive building blocks to form ordered structures.MSA is essential to realize the concept of"self-assembly at all scales"by bridging most supramolecular researches at molecular level and at macroscopic scale.This review summaries the development of MSA,the basic design principle and related strategies to achieve MSA and potential applications.Correspondingly,we try to elucidate the correlations and differences between"macroscopic assembly"and MSA based on intermolecular interactions;the design principle and the underlying assembly mechanism of MSA are proposed to understand the reported MSA behaviors;to demonstrate further applications of MSA,we introduce some methods to improve the ordered degree of the assembled structures from the point of precise assembly and thus envision some possible fields for the use of MSA.展开更多
The microstructure evolution and strengthening mechanisms of Mg-10Gd-1Er-1Zn-0.6Zr(wt.%) alloy were focused in the view of the size parameters and volume fraction(fp) of dual phases(long period stacking ordered(LPSO) ...The microstructure evolution and strengthening mechanisms of Mg-10Gd-1Er-1Zn-0.6Zr(wt.%) alloy were focused in the view of the size parameters and volume fraction(fp) of dual phases(long period stacking ordered(LPSO) structures and β’ precipitates).Results show that two types of LPSO phases with different morphologies formed,and the morphology and size of both LPSO phases varied with the solution conditions.However,the volume fraction decreased monotonously with increasing solution temperature,which in turn raised the volume fraction of β’ phase during aging.The alloy exhibited an ultimate tensile strength of 352 MPa,a yield strength of 271 MPa,and an elongation of 3.5% after solution treatment at 500℃ for 12 h and aging at 200℃ for 114 h.In contrast to the LPSO phase,the β’ phase seems to play a more important role in enhancing the yield strength,and consequently,a decreased fLPSO/fβ’,ratio results in an increased yield strength.展开更多
The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth ...The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth of Pt_(3)Ni truncated octahedrons on Ti3C2Tx nanosheets and then obtain an ordered porous catalyst via a template method.Meanwhile,we use the finite element calculation to clarify the relationship between the component structure and performance and find that the performance of the spherical shell microstructure catalyst is higher than that of the disc structure catalyst,which is also verified by experiments.The experimental analysis shows that the ordered porous catalyst is conducive to enhancing electrocatalytic hydrogen evolution activity in acidic and alkaline electrolytes.In an acidic solution,the overpotential is 25 mV(10 mA·cm^(−2)),and the Tafel slope is 22.86 mV·dec−1.In an alkaline solution,the overpotential is 44.1 mV(10 mA·cm^(−2)),and the Tafel slope is 39.06 mV·dec−1.The synergistic coupling between Ti3C2Tx and Pt_(3)Ni nanoparticles improves the stability of the catalyst.The in situ growth strategy and design of microstructure with its correlation with catalytic performance represent critical steps toward the rational synthesis of catalysts with excellent catalytic activity.展开更多
Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of r...Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of reconstructing colored three-dimensional(3 D) images and enabling the electro-optic response. They are formed via photopolymerization induced phase separation upon exposure to laser interference patterns, where a fast photopolymerization is required to facilitate the holographic patterning. Yet, the fast photopolymerization generally leads to depressed phase separation and it remains challenging to boost the holographic performance via kinetics control.Herein, we disclose that the ketyl radical inhibition is able to significantly boost the phase separation and holographic performance by preventing the proliferated diffusion of initiating radicals from the constructive to the destructive regions. Dramatically depressed phase separation is caused when converting the inhibiting ketyl radical to a new initiating radical, indicating the significance of ketyl radical inhibition when designing high performance holographic polymer composites.展开更多
Due to the unique fluorescence characteristics,superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science,and thus it has broad application pote...Due to the unique fluorescence characteristics,superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science,and thus it has broad application potential in displays,single-photon source,sensing,biological tagging and emerging quantum technologies.Superstructure refers to an artificial functional architecture whose length scale is between the quantum scale and the macroscale.When solely treating this complicated stage fitted from less complicated pieces together(basic nanoparticles)and pile speculation on speculation,we must understand the fundamental questions,that is,what the hierarchy or specialization of function is at the stage.The uniqueness of this stage is not the collection of basic nanoparticles,but the behavior that emerges on fluorescence-basically a new type of behavior.Under the angle of view,this study reviews the advances in the fluorescence of individual semiconductor nanoparticles,inter-nanoparticles coupling and thus emergent fluorescence behaviors of assemblies.We also try to present the methodology for seeking emergent behaviors on fluorescence.展开更多
The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into ac...The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.展开更多
Self-assembly is deemed to be an effective and inspiring strategy to construct programmable and innovative super-ordered structures.Here,we have,for the first time,achieved the large-area super-ordered two-dimensional...Self-assembly is deemed to be an effective and inspiring strategy to construct programmable and innovative super-ordered structures.Here,we have,for the first time,achieved the large-area super-ordered two-dimensional(2D)emptiness arrays in graphene by silicon dioxide self-assembly pre-occupancy.The prominent uniform periodicity of 2D emptiness arrays in graphene can be flexibly adjusted.The synergistic interaction between the pre-occupancy structural unit and graphene contributes to the successful acquisition of 2D emptiness arrays.The realization of 2D emptiness arrays by self-assembly pre-occupancy strategy would shed light on the rational redaction,fabrication and research of complex 2D super-ordered structure systems and facilitate their applications for various fields,such as highly integrated functional devices,precise location acquisition systems,sensing,separation,and so on.展开更多
Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response t...Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response to pH were investigated. Through the sol-gel process of tetrabutyl titanate, opal titania was obtained with the opal hydrogel template.展开更多
We study the conjugate gradient method for solving a system of linear equations with coefficients which are measurable functions and establish the rate of convergence of this method.
采用聚焦离子束定点切割技术(Focused ion beam,FIB),透射电镜(Transmission electron microscopy,TEM)、高角度环形暗场扫描透射电镜(High angle annular dark field scanning transmission electron microscopy,HAADF-STEM)和扫描电镜...采用聚焦离子束定点切割技术(Focused ion beam,FIB),透射电镜(Transmission electron microscopy,TEM)、高角度环形暗场扫描透射电镜(High angle annular dark field scanning transmission electron microscopy,HAADF-STEM)和扫描电镜(Scanning electron microscopy,SEM)等技术手段,对Mg-7Gd-5Y-1Nd-2Zn-0.5Zr合金铸态及(515℃,48 h)均匀化态的组织形貌进行观察分析。结果表明:铸态合金晶界共晶组织中含有(Mg,Zn)_(3)RE相(FCC,a=0.72 nm)、Mg_(5)(RE,Zn)相(FCC,a=2.24 nm)及块状长周期堆垛有序(Long-period stacking ordered,LPSO)相。其中LPSO相主要为18R结构,存在少量14H结构,局部区域存在少量不完整周期的LPSO结构;此外合金中存在分布于共晶相附近的微米级富RE相以及分布于晶粒内部的微米级富Zr颗粒。经过(515℃,48 h)均匀化热处理,晶界(Mg,Zn)_(3)RE相和Mg_(5)(RE,Zn)相完全回溶,残留相主要为14H-LPSO相,局部区域存在具有不同晶体结构的LPSO过渡相。在铸态合金的晶粒内部,沿[1120]_(a)晶带轴观察,发现存在几个原子面至纳米尺度的LPSO构建块,由不同数量的LPSO构建块单元(4个RE/Zn原子层)及Mg原子层交替堆垛构成,RE/Zn与Mg原子层堆垛次序不具备完整周期性;均匀化热处理后,晶内的LPSO构建块几乎回溶,仅剩下极少量单个LPSO构建块单元。沿[0001]_(a)晶带轴观察,晶粒内部存在多种分布方式的富RE/Zn原子柱,为Mg-Gd-Y系镁合金时效过程β′析出序列中GP区的早期结构。展开更多
文摘Macroscopic supramolecular assembly(MSA)has been a recent progress in supramolecular chemistry.MSA mainly focuses on studies of the building blocks with a size beyond ten micrometers and the non-covalent interactions between these interactive building blocks to form ordered structures.MSA is essential to realize the concept of"self-assembly at all scales"by bridging most supramolecular researches at molecular level and at macroscopic scale.This review summaries the development of MSA,the basic design principle and related strategies to achieve MSA and potential applications.Correspondingly,we try to elucidate the correlations and differences between"macroscopic assembly"and MSA based on intermolecular interactions;the design principle and the underlying assembly mechanism of MSA are proposed to understand the reported MSA behaviors;to demonstrate further applications of MSA,we introduce some methods to improve the ordered degree of the assembled structures from the point of precise assembly and thus envision some possible fields for the use of MSA.
基金Project(2016YFB0301101)supported by the National Key Research and Development Program of ChinaProject(Z161100002116033)supported by Beijing Municipal Science and Technology Commission,China+1 种基金Project(KZ201810005005)supported by Key Science and Technology Program of Beijing Municipal Commission of Education,ChinaProject(2172013)supported by Beijing Natural Science Foundation,China
文摘The microstructure evolution and strengthening mechanisms of Mg-10Gd-1Er-1Zn-0.6Zr(wt.%) alloy were focused in the view of the size parameters and volume fraction(fp) of dual phases(long period stacking ordered(LPSO) structures and β’ precipitates).Results show that two types of LPSO phases with different morphologies formed,and the morphology and size of both LPSO phases varied with the solution conditions.However,the volume fraction decreased monotonously with increasing solution temperature,which in turn raised the volume fraction of β’ phase during aging.The alloy exhibited an ultimate tensile strength of 352 MPa,a yield strength of 271 MPa,and an elongation of 3.5% after solution treatment at 500℃ for 12 h and aging at 200℃ for 114 h.In contrast to the LPSO phase,the β’ phase seems to play a more important role in enhancing the yield strength,and consequently,a decreased fLPSO/fβ’,ratio results in an increased yield strength.
基金Thanks for the financial support of the National Key R&D Program of China(Nos.2021YFB3200700 and 2016YFC1100502)the National Natural Science Foundation of China(Nos.21875260 and 21671193)+3 种基金Beijing Nature Science Foundation(No.2202069)Zhongguancun Open Laboratory Concept Verification Project(No.202205229)the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology(No.DMETKF2022004)the China Science and Technology Cloud for calculation support.
文摘The development of an efficient Pt-based electrocatalyst in acidic and alkaline electrolytes is of great significance to the field of electrocatalytic hydrogen evolution.Herein,we report a strategy for in situ growth of Pt_(3)Ni truncated octahedrons on Ti3C2Tx nanosheets and then obtain an ordered porous catalyst via a template method.Meanwhile,we use the finite element calculation to clarify the relationship between the component structure and performance and find that the performance of the spherical shell microstructure catalyst is higher than that of the disc structure catalyst,which is also verified by experiments.The experimental analysis shows that the ordered porous catalyst is conducive to enhancing electrocatalytic hydrogen evolution activity in acidic and alkaline electrolytes.In an acidic solution,the overpotential is 25 mV(10 mA·cm^(−2)),and the Tafel slope is 22.86 mV·dec−1.In an alkaline solution,the overpotential is 44.1 mV(10 mA·cm^(−2)),and the Tafel slope is 39.06 mV·dec−1.The synergistic coupling between Ti3C2Tx and Pt_(3)Ni nanoparticles improves the stability of the catalyst.The in situ growth strategy and design of microstructure with its correlation with catalytic performance represent critical steps toward the rational synthesis of catalysts with excellent catalytic activity.
基金financial supports from the National Natural Science Foundation of China (51433002 and 51773073)HUST peak boarding program+1 种基金the National Science Foundation (NSF) of Hubei Scientific Committee (2016CFA001)the Fundamental Research Funds for the Central Universities (2019kfy RCPY089)
文摘Holographic polymer/liquid-crystal composites,which are periodically ordered materials with alternative polymer-rich and liquid-crystal-rich phases, have drawn increasing interest due to their unique capabilities of reconstructing colored three-dimensional(3 D) images and enabling the electro-optic response. They are formed via photopolymerization induced phase separation upon exposure to laser interference patterns, where a fast photopolymerization is required to facilitate the holographic patterning. Yet, the fast photopolymerization generally leads to depressed phase separation and it remains challenging to boost the holographic performance via kinetics control.Herein, we disclose that the ketyl radical inhibition is able to significantly boost the phase separation and holographic performance by preventing the proliferated diffusion of initiating radicals from the constructive to the destructive regions. Dramatically depressed phase separation is caused when converting the inhibiting ketyl radical to a new initiating radical, indicating the significance of ketyl radical inhibition when designing high performance holographic polymer composites.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21925405 and 201874005)the National Key Research and Development Program of China(No.2018YFA0208800)Chinese Academy of Sciences(Nos.XDA23030106 and YJKYYQ20180044).
文摘Due to the unique fluorescence characteristics,superstructures from self-assembly of semiconductor nanoparticles have become essential components of material and chemical science,and thus it has broad application potential in displays,single-photon source,sensing,biological tagging and emerging quantum technologies.Superstructure refers to an artificial functional architecture whose length scale is between the quantum scale and the macroscale.When solely treating this complicated stage fitted from less complicated pieces together(basic nanoparticles)and pile speculation on speculation,we must understand the fundamental questions,that is,what the hierarchy or specialization of function is at the stage.The uniqueness of this stage is not the collection of basic nanoparticles,but the behavior that emerges on fluorescence-basically a new type of behavior.Under the angle of view,this study reviews the advances in the fluorescence of individual semiconductor nanoparticles,inter-nanoparticles coupling and thus emergent fluorescence behaviors of assemblies.We also try to present the methodology for seeking emergent behaviors on fluorescence.
文摘The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.
基金supported by the National Natural Science Foundation of China(22025303 and 21905210)the Sino-German Center for Research Promotion(GZ 1400)。
文摘Self-assembly is deemed to be an effective and inspiring strategy to construct programmable and innovative super-ordered structures.Here,we have,for the first time,achieved the large-area super-ordered two-dimensional(2D)emptiness arrays in graphene by silicon dioxide self-assembly pre-occupancy.The prominent uniform periodicity of 2D emptiness arrays in graphene can be flexibly adjusted.The synergistic interaction between the pre-occupancy structural unit and graphene contributes to the successful acquisition of 2D emptiness arrays.The realization of 2D emptiness arrays by self-assembly pre-occupancy strategy would shed light on the rational redaction,fabrication and research of complex 2D super-ordered structure systems and facilitate their applications for various fields,such as highly integrated functional devices,precise location acquisition systems,sensing,separation,and so on.
基金supported by the National Natural Science Foundation of China(Grant Nos.90206025 and 20128004).
文摘Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response to pH were investigated. Through the sol-gel process of tetrabutyl titanate, opal titania was obtained with the opal hydrogel template.
文摘We study the conjugate gradient method for solving a system of linear equations with coefficients which are measurable functions and establish the rate of convergence of this method.
文摘采用聚焦离子束定点切割技术(Focused ion beam,FIB),透射电镜(Transmission electron microscopy,TEM)、高角度环形暗场扫描透射电镜(High angle annular dark field scanning transmission electron microscopy,HAADF-STEM)和扫描电镜(Scanning electron microscopy,SEM)等技术手段,对Mg-7Gd-5Y-1Nd-2Zn-0.5Zr合金铸态及(515℃,48 h)均匀化态的组织形貌进行观察分析。结果表明:铸态合金晶界共晶组织中含有(Mg,Zn)_(3)RE相(FCC,a=0.72 nm)、Mg_(5)(RE,Zn)相(FCC,a=2.24 nm)及块状长周期堆垛有序(Long-period stacking ordered,LPSO)相。其中LPSO相主要为18R结构,存在少量14H结构,局部区域存在少量不完整周期的LPSO结构;此外合金中存在分布于共晶相附近的微米级富RE相以及分布于晶粒内部的微米级富Zr颗粒。经过(515℃,48 h)均匀化热处理,晶界(Mg,Zn)_(3)RE相和Mg_(5)(RE,Zn)相完全回溶,残留相主要为14H-LPSO相,局部区域存在具有不同晶体结构的LPSO过渡相。在铸态合金的晶粒内部,沿[1120]_(a)晶带轴观察,发现存在几个原子面至纳米尺度的LPSO构建块,由不同数量的LPSO构建块单元(4个RE/Zn原子层)及Mg原子层交替堆垛构成,RE/Zn与Mg原子层堆垛次序不具备完整周期性;均匀化热处理后,晶内的LPSO构建块几乎回溶,仅剩下极少量单个LPSO构建块单元。沿[0001]_(a)晶带轴观察,晶粒内部存在多种分布方式的富RE/Zn原子柱,为Mg-Gd-Y系镁合金时效过程β′析出序列中GP区的早期结构。
基金Research Foundation of Nanjing Institute of Technology(ZKJ201604)Innovative Foundation Project for Students of Nanjing Institute of Technology(TB201702004)Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province