期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于随机森林的哈希检索算法 被引量:5
1
作者 花强 郭欣欣 +1 位作者 张峰 董春茹 《计算机科学与探索》 CSCD 北大核心 2019年第7期1174-1183,共10页
从海量数据中进行近似数据的检索是数据挖掘领域许多应用的关键。尤其近年来,数据的规模出现爆炸式增长,数据检索需面对海量数据和“维度灾难”的叠加考验,这使得传统最近邻算法效率降低,而近似最近邻算法发挥了越来越重要的作用。其中... 从海量数据中进行近似数据的检索是数据挖掘领域许多应用的关键。尤其近年来,数据的规模出现爆炸式增长,数据检索需面对海量数据和“维度灾难”的叠加考验,这使得传统最近邻算法效率降低,而近似最近邻算法发挥了越来越重要的作用。其中哈希算法以其在存储空间和计算时间上的优势受到了广泛关注。提出了一种基于随机森林的哈希算法。该算法通过构建随机森林,将原始空间的样本映射为海明空间的二进制哈希码,并在哈希空间上定义了顺序敏感的海明距离,以最大程度保持数据在原空间的近邻关系不变。由于随机森林中不同决策树所使用的特征空间和学习过程是独立的,可以以增量的方式灵活地确定哈希码的长度。此外基于随机森林的哈希编码算法天然适合并行部署,从而可以大大提高算法速度。最后,在MNIST和CIFAR-10数据集对所提算法进行了实验验证,结果表明了算法的有效性和出色性能。 展开更多
关键词 近似近邻检索(ANNS) 哈希编码 随机森林 顺序敏感的海明距离
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部