Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the pote...Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems,with OAM beams acting as information carriers for OAM division multiplexing(OAM-DM).We demonstrate independent collinear OAM channel generation,transmission and simultaneous detection using Dammann optical vortex gratings(DOVGs).We achieve 80/160 Tbit s^(-1) capacity with uniform power distributions along all channels,with 1600 individually modulated quadrature phase-shift keying(QPSK)/16-QAM data channels multiplexed by 10 OAM states,80 wavelengths and two polarizations.DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s^(-1) level.展开更多
Light beams with a helical phase-front possess orbital angular momentum along their direction of propagation in addition to the spin angular momentum that describes their polarisation.Until recently,it was thought tha...Light beams with a helical phase-front possess orbital angular momentum along their direction of propagation in addition to the spin angular momentum that describes their polarisation.Until recently,it was thought that these two‘rotational’motions of light were largely independent and could not be coupled during light–matter interactions.However,it is now known that interactions with carefully designed complex media can result in spin-to-orbit coupling,where a change of the spin angular momentum will modify the orbital angular momentum and vice versa.In this work,we propose and demonstrate that the birefringence of plasmonic nanostructures can be wielded to transform circularly polarised light into light carrying orbital angular momentum.A device operating at visible wavelengths is designed from a space-variant array of subwavelength plasmonic nano-antennas.Experiment confirms that circularly polarised light transmitted through the device is imbued with orbital angular momentum of 62"(with conversion efficiency of at least 1%).This technology paves the way towards ultrathin orbital angular momentum generators that could be integrated into applications for spectroscopy,nanoscale sensing and classical or quantum communications using integrated photonic devices.展开更多
With the rapid development of space technology, orbital spacecraft formation has received great attention from international and domestic academics and industry. Compared with a single monolithic, the orbital spacecra...With the rapid development of space technology, orbital spacecraft formation has received great attention from international and domestic academics and industry. Compared with a single monolithic, the orbital spacecraft formation system has many advantages. This paper presents an improved pigeon-inspired optimization(PIO) algorithm for solving the optimal formation reconfiguration problems of multiple orbital spacecraft. Considering that the uniform distribution random searching system in PIO has its own weakness, a modified PIO model adopting Gaussian strategy is presented and the detailed process is also given. Comparative experiments with basic PIO and particle swarm optimization(PSO) are conducted, and the results have verified the feasibility and effectiveness of the proposed Gaussian PIO(GPIO) in solving orbital spacecraft formation reconfiguration problems.展开更多
Virtual surgical planning (VSP) has recently been introduced in craniomaxillofacial surgery with the goal of improving efficiency and precision for complex surgical operations. Among many indications, VSP can also b...Virtual surgical planning (VSP) has recently been introduced in craniomaxillofacial surgery with the goal of improving efficiency and precision for complex surgical operations. Among many indications, VSP can also be applied for the treatment of congenital and acquired craniofacial defects, including orbital fractures. VSP permits the surgeon to visualize the complex anatomy of craniofacial region, showing the relationship between bone and neurovascular structures. It can be used to design and print using three- dimensional (3D) printing technology and customized surgical models. Additionally, intraoperative navigation may be useful as an aid in performing the surgery. Navigation is useful for both the surgical dissection as well as to confirm the placement of the implant. Navigation has been found to be especially useful for orbit and sinus surgery. The present paper reports a case describing the use of VSP and computerized navigation for the reconstruction of a large orbital floor defect with a custom implant.展开更多
Recent advances in the research of vortex beams,structured beams carrying orbital angular momentum(OAM),have revolutionized the applications of light beams,such as advanced optical manipulations,high-capacity optical ...Recent advances in the research of vortex beams,structured beams carrying orbital angular momentum(OAM),have revolutionized the applications of light beams,such as advanced optical manipulations,high-capacity optical communications,and super-resolution imaging.Undoubtedly,the methods for generation of a vortex beam and detection of its OAM are of vital importance for the applications of vortex beams.In this review,we first introduce the fundamental concepts of vortex beams briefly and then summarize approaches to generating and detecting the vortex beams separately,from bulky diffractive elements to planar elements.Finally,we make a concise conclusion and outline that is yet to be explored.展开更多
Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that e...Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.展开更多
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combinatio...Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combination of photonic spin and orbital angular momentum(OAM).Photonic spin angular momentum(SAM)interactions with matter have long been studied,whereas the photonic OAM has only recently been discovered,receiving attention in the past three decades.Although controlling polarization(i.e.,SAM)alone can provide useful information about the media with which the light interacts,light fields carrying both OAM and SAM may provide additional information,permitting new sensing mechanisms and light–matter interactions.We summarize recent developments in controlling photonic angular momentum(AM)using complex structured optical fields.Arbitrarily oriented photonic SAM and OAM states may be generated through careful engineering of the spatial and temporal structures of optical fields.Moreover,we discuss potential applications of specifically engineered photonic AM states in optical tweezers,directional coupling,and optical information transmission and processing.展开更多
The molecular geometries and electronic structures of 30 nitrobenzenes have been calculated by using semi-empirical MO AM1 and PM3 methods. EHOMO, ELUMO, ENHOMO, ENLUMO, AE, QNO2, Qc and V were selected as the structu...The molecular geometries and electronic structures of 30 nitrobenzenes have been calculated by using semi-empirical MO AM1 and PM3 methods. EHOMO, ELUMO, ENHOMO, ENLUMO, AE, QNO2, Qc and V were selected as the structural descriptors. The acute toxicity (-log/C50) of nitrobenzenes to tetrahymena pyriformis along with the above eight structural parameters was used to establish the quantitative structure-activity relationships (QSARs). The results indicate that the established model based on AM I method is superior to that on PM3 method not only for the stability but also for the predictive powers of the model. Based on AM1 parameters, a further classifying discussion was presented for the study of nitrobenzene toxic mechanism. The results show that the substituents, nitro group and halogen substituents on the aromatic ring are crucial to the chemicals' toxicity. For nitrobenzenes without halogen or other substituent, the reduction of nitro group is the main route. However, for those with halogen substituents, their next lowest unoccupied molecular orbital may take part in the toxic action betweeen the chemicals and macromolecules, and ENLUMO has the most important effect on these chemicals' toxicity.展开更多
Orbital inflammatory disease(OID) represents a collec tion of inflammatory conditions affecting the orbit. OID is a diagnosis of exclusion, with the differential diagno sis including infection, systemic inflammatory c...Orbital inflammatory disease(OID) represents a collec tion of inflammatory conditions affecting the orbit. OID is a diagnosis of exclusion, with the differential diagno sis including infection, systemic inflammatory conditions and neoplasms, among other conditions. Inflammatory conditions in OID include dacryoadenitis, myositis, cel lulitis, optic perineuritis, periscleritis, orbital apicitis, and a focal mass. Sclerosing orbital inflammation is a rare condition with a chronic, indolent course involving dense fibrosis and lymphocytic infiltrate. Previously though to be along the spectrum of OID, it is now considered a distinct pathologic entity. Imaging plays an importan role in elucidating any underlying etiology behind orbita inflammation and is critical for ruling out other condi tions prior to a definitive diagnosis of OID. In this re view, we will explore the common sites of involvemen by OID and discuss differential diagnosis by site and key imaging findings for each condition.展开更多
The hierarchically organized laminae, bundles, bundlesets and superbundlesets which correspond to a sub-Milankovitch, obliquity or precession, eccentricity and long eccentricity cyclothems, respectively, have been dis...The hierarchically organized laminae, bundles, bundlesets and superbundlesets which correspond to a sub-Milankovitch, obliquity or precession, eccentricity and long eccentricity cyclothems, respectively, have been distinguished from the Upper Devonian Fras-nian-Famennian (F-F) transitional carbonate successions deposited in the carbonate-basin and slope facies of Guangxi, South China. The durations of cyclothems are 8000-10000a, 16667a or 33333a, 100000a and 400000a, respectively. The ratio of eccentricity to precession, eccentricity to obliquity, and long eccentricity to eccentricity is 1 : 6, 1 : 3 and 1 : 4 in the Devonian, respectively. Orbital cyclostratigraphical studies show that the durations of the conodont falsio-valis Zone, transitans Zone, punctate Zone, Lower hassi Zone, Upper hassi Zone, jamieae Zone, Lower rhenana Zone, Upper rhenana Zone, linguiformis Zone, Lower triangularis Zone, Middle triangularis Zone and Upper triangularis Zone are 0.4, 0.4, 0.4, 0.3, 0.4, 0.2, 0.8, 0.6, 0.8, 0.3, 0.3 and 0.3 Ma from bottom to top, respectively, and the duration of the Frasnian is 4.3 Ma. The conodont is the normal marine organism of the latest mass extinction (the latest linguiformis Zone) and the first recovery (including the whole Lower triangularis and Middle triangularis Zone) in the F-F transition. The conodont mass extinction and recovery lasted 200000-100000a and 0.6 Ma, respectively. We consider that average durations of the fossil zones calculated by reported numerical ages divided by fossil zone numbers within a stage or series or system cannot discovery complications and non-uniformity of evolutionary organisms and environments.展开更多
In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized t...In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.展开更多
A new complex[Co(NIPH)(mbix)]n(1,H2NIPH = 5-nitroisophthalic acid,mbix =l,3-bis(imidazol-l-ylmethyl)benzene) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum...A new complex[Co(NIPH)(mbix)]n(1,H2NIPH = 5-nitroisophthalic acid,mbix =l,3-bis(imidazol-l-ylmethyl)benzene) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum,UV spectrum,TG and single-crystal X-ray diffraction.Pink crystals crystallize in the triclinic system,space group P1 with a = 8.3797(8),b= 10.2522(10),c= 13.4244(13) A,α=94.820(2),β=108.105(2),γ=104.816(2)°,V=1042.84(17) A^3,C(22)H(17)CoN5O6,Mr = 506.34,Dc = 1.613 g/cm^3,F(000) = 518,Z = 2,μ(MoKα) =0.876 mm^(-1),the final R = 0.0505 and wR = 0.1254 for 3267 observed reflections(I〉2σ(I)).The structure of 1 exhibits a two-dimensional network structure and is extended into a three-dimensional supramolecule through hydrogen bonds and n-n interactions.In addition,Natural Bond Orbital(NBO) analysis was performed by using the PBE0/LANL2 DZ method built in Gaussian 09 Program.The calculation results showed obvious covalent interactions between the coordinated atoms and Co(Ⅱ) ion.展开更多
High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser ir...High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.展开更多
目的探讨商业化软件计算球后脂肪体积,分析其与甲状腺相关性眼病(TAO)进展及预后的关系。方法收集2016年1月~2016年12月在我院内分泌科确诊的35例(70个眼眶)TAO患者的临床资料。测量1.5T眼眶MRI球后脂肪体积及眼外肌信号强度比值(SIR)...目的探讨商业化软件计算球后脂肪体积,分析其与甲状腺相关性眼病(TAO)进展及预后的关系。方法收集2016年1月~2016年12月在我院内分泌科确诊的35例(70个眼眶)TAO患者的临床资料。测量1.5T眼眶MRI球后脂肪体积及眼外肌信号强度比值(SIR)分析其与临床各项指标的相关性,并收集12例(24个眼眶)健康人测量球后脂肪体积,初步比较TAO组及健康组体积的差异。结果脂肪体积与病程成正相关(r=0.480,P<0.01),病程6个月以内组与6~12个月组相比,脂肪体积差异不显著(P=0.084)。病程6个月以内组及病程6~12个月组球后脂肪体积均显著低于病程大于12个月组(P<0.01,P<0.05)。脂肪体积与突眼度存在相关性(r=0.622,P<0.01),突眼度每增加1 mm,球后脂肪体积将增加0.88 m L。临床活动性评分(CAS)与SIR值及促甲状腺素受体抗体(TRAb)存在相关性(r=0.536,r=0.416,P<0.01)。TAO组球后脂肪体积显著高于正常组(P<0.01)。结论 TAO病程1年以上可能是球后脂肪组织增多的高峰阶段,球后脂肪体积结合SIR值的测量有助于最佳激素治疗时机的探索及预后分析。展开更多
Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical process...Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical processes,the nonlinear harmonic field is coupled with the input field,laying a fundamental barrier to independent control of the interacting fields for holography.We propose and experimentally demonstrate high-dimensional orbital angular momentum(OAM)multiplexing nonlinear holography to overcome this problem.By dividing the wavefront of the fundamental wave into different orthogonal OAM channels,multiple OAM and polarization-dependent holographic images in both the fundamental wave and second-harmonic wave have been reconstructed independently in the spatial frequency domain through a type-II second harmonic generation process.Moreover,this method can be easily extended to cascadedχ2 nonlinear optical processes for multiplexing in more wavelength channels,leading to potential applications in multicasting in optical communications,multiwavelength display,multidimensional optical storage,anticounterfeiting,and optical encryption.展开更多
基金This work was partially supported by the National Natural Science Foundation of China under Grant numbers 61036013,61138003,61427819,61001101 and 61435006XY acknowledges support from the Ministry of Science and Technology of China under National Basic Research Program of China(973)grant no.2015CB352004.
文摘Data transmission rates in optical communication systems are approaching the limits of conventional multiplexing methods.Orbital angular momentum(OAM)in optical vortex beams offers a new degree of freedom and the potential to increase the capacity of free-space optical communication systems,with OAM beams acting as information carriers for OAM division multiplexing(OAM-DM).We demonstrate independent collinear OAM channel generation,transmission and simultaneous detection using Dammann optical vortex gratings(DOVGs).We achieve 80/160 Tbit s^(-1) capacity with uniform power distributions along all channels,with 1600 individually modulated quadrature phase-shift keying(QPSK)/16-QAM data channels multiplexed by 10 OAM states,80 wavelengths and two polarizations.DOVG-enabled OAM multiplexing technology removes the bottleneck of massive OAM state parallel detection and offers an opportunity to raise optical communication systems capacity to Pbit s^(-1) level.
文摘Light beams with a helical phase-front possess orbital angular momentum along their direction of propagation in addition to the spin angular momentum that describes their polarisation.Until recently,it was thought that these two‘rotational’motions of light were largely independent and could not be coupled during light–matter interactions.However,it is now known that interactions with carefully designed complex media can result in spin-to-orbit coupling,where a change of the spin angular momentum will modify the orbital angular momentum and vice versa.In this work,we propose and demonstrate that the birefringence of plasmonic nanostructures can be wielded to transform circularly polarised light into light carrying orbital angular momentum.A device operating at visible wavelengths is designed from a space-variant array of subwavelength plasmonic nano-antennas.Experiment confirms that circularly polarised light transmitted through the device is imbued with orbital angular momentum of 62"(with conversion efficiency of at least 1%).This technology paves the way towards ultrathin orbital angular momentum generators that could be integrated into applications for spectroscopy,nanoscale sensing and classical or quantum communications using integrated photonic devices.
基金supported by the National Natural Science Foundation of China(Nos.61425008,61333004,61273054)the Top-Notch Young Talents Program of Chinathe Aeronautical Science Foundation of China(No.20135851042)
文摘With the rapid development of space technology, orbital spacecraft formation has received great attention from international and domestic academics and industry. Compared with a single monolithic, the orbital spacecraft formation system has many advantages. This paper presents an improved pigeon-inspired optimization(PIO) algorithm for solving the optimal formation reconfiguration problems of multiple orbital spacecraft. Considering that the uniform distribution random searching system in PIO has its own weakness, a modified PIO model adopting Gaussian strategy is presented and the detailed process is also given. Comparative experiments with basic PIO and particle swarm optimization(PSO) are conducted, and the results have verified the feasibility and effectiveness of the proposed Gaussian PIO(GPIO) in solving orbital spacecraft formation reconfiguration problems.
文摘Virtual surgical planning (VSP) has recently been introduced in craniomaxillofacial surgery with the goal of improving efficiency and precision for complex surgical operations. Among many indications, VSP can also be applied for the treatment of congenital and acquired craniofacial defects, including orbital fractures. VSP permits the surgeon to visualize the complex anatomy of craniofacial region, showing the relationship between bone and neurovascular structures. It can be used to design and print using three- dimensional (3D) printing technology and customized surgical models. Additionally, intraoperative navigation may be useful as an aid in performing the surgery. Navigation is useful for both the surgical dissection as well as to confirm the placement of the implant. Navigation has been found to be especially useful for orbit and sinus surgery. The present paper reports a case describing the use of VSP and computerized navigation for the reconstruction of a large orbital floor defect with a custom implant.
基金supported by the National Natural Science Foundation of China (Nos. 11874102 and 12174047)Sichuan Province Science and Technology Support Program (No. 2020JDRC0006)Fundamental Research Funds for the Central Universities (No. ZYGX2019J102)
文摘Recent advances in the research of vortex beams,structured beams carrying orbital angular momentum(OAM),have revolutionized the applications of light beams,such as advanced optical manipulations,high-capacity optical communications,and super-resolution imaging.Undoubtedly,the methods for generation of a vortex beam and detection of its OAM are of vital importance for the applications of vortex beams.In this review,we first introduce the fundamental concepts of vortex beams briefly and then summarize approaches to generating and detecting the vortex beams separately,from bulky diffractive elements to planar elements.Finally,we make a concise conclusion and outline that is yet to be explored.
基金supported by the National Basic Research Program of China(Grant No.2014CB340004)the National Natural Science Foundation of China(Grant Nos.11574001,61761130082,11774116,11274131,and61222502)+3 种基金the Royal Society-Newton Advanced Fellowshipthe National Program for Support of Top-notch Young Professionalsthe Yangtze River Excellent Young Scholars Program,the Natural Science Foundation of Hubei Province of China(Grant No.2018CFA048)the Program for HUST Academic Frontier Youth Team
文摘Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
基金supported by the National Natural Science Foundation of China(Nos.92050202,61805142,and 61875245)Shanghai Science and Technology Committee(No.19060502500)Shanghai Natural Science Foundation(No.20ZR1437600).
文摘Structured light with inhomogeneous phase,amplitude,and polarization spatial distributions that represent an infinite-dimensional space of eigenstates for light as the ideal carrier can provide a structured combination of photonic spin and orbital angular momentum(OAM).Photonic spin angular momentum(SAM)interactions with matter have long been studied,whereas the photonic OAM has only recently been discovered,receiving attention in the past three decades.Although controlling polarization(i.e.,SAM)alone can provide useful information about the media with which the light interacts,light fields carrying both OAM and SAM may provide additional information,permitting new sensing mechanisms and light–matter interactions.We summarize recent developments in controlling photonic angular momentum(AM)using complex structured optical fields.Arbitrarily oriented photonic SAM and OAM states may be generated through careful engineering of the spatial and temporal structures of optical fields.Moreover,we discuss potential applications of specifically engineered photonic AM states in optical tweezers,directional coupling,and optical information transmission and processing.
基金This work was supported by the National Natural Science Foundation of China (No.10576030)
文摘The molecular geometries and electronic structures of 30 nitrobenzenes have been calculated by using semi-empirical MO AM1 and PM3 methods. EHOMO, ELUMO, ENHOMO, ENLUMO, AE, QNO2, Qc and V were selected as the structural descriptors. The acute toxicity (-log/C50) of nitrobenzenes to tetrahymena pyriformis along with the above eight structural parameters was used to establish the quantitative structure-activity relationships (QSARs). The results indicate that the established model based on AM I method is superior to that on PM3 method not only for the stability but also for the predictive powers of the model. Based on AM1 parameters, a further classifying discussion was presented for the study of nitrobenzene toxic mechanism. The results show that the substituents, nitro group and halogen substituents on the aromatic ring are crucial to the chemicals' toxicity. For nitrobenzenes without halogen or other substituent, the reduction of nitro group is the main route. However, for those with halogen substituents, their next lowest unoccupied molecular orbital may take part in the toxic action betweeen the chemicals and macromolecules, and ENLUMO has the most important effect on these chemicals' toxicity.
文摘Orbital inflammatory disease(OID) represents a collec tion of inflammatory conditions affecting the orbit. OID is a diagnosis of exclusion, with the differential diagno sis including infection, systemic inflammatory conditions and neoplasms, among other conditions. Inflammatory conditions in OID include dacryoadenitis, myositis, cel lulitis, optic perineuritis, periscleritis, orbital apicitis, and a focal mass. Sclerosing orbital inflammation is a rare condition with a chronic, indolent course involving dense fibrosis and lymphocytic infiltrate. Previously though to be along the spectrum of OID, it is now considered a distinct pathologic entity. Imaging plays an importan role in elucidating any underlying etiology behind orbita inflammation and is critical for ruling out other condi tions prior to a definitive diagnosis of OID. In this re view, we will explore the common sites of involvemen by OID and discuss differential diagnosis by site and key imaging findings for each condition.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.40072041 and 40472020)the Chinese Commission on Stratigrapby and the Climbing Project of Ministry of Science and Technology of China(SSER).
文摘The hierarchically organized laminae, bundles, bundlesets and superbundlesets which correspond to a sub-Milankovitch, obliquity or precession, eccentricity and long eccentricity cyclothems, respectively, have been distinguished from the Upper Devonian Fras-nian-Famennian (F-F) transitional carbonate successions deposited in the carbonate-basin and slope facies of Guangxi, South China. The durations of cyclothems are 8000-10000a, 16667a or 33333a, 100000a and 400000a, respectively. The ratio of eccentricity to precession, eccentricity to obliquity, and long eccentricity to eccentricity is 1 : 6, 1 : 3 and 1 : 4 in the Devonian, respectively. Orbital cyclostratigraphical studies show that the durations of the conodont falsio-valis Zone, transitans Zone, punctate Zone, Lower hassi Zone, Upper hassi Zone, jamieae Zone, Lower rhenana Zone, Upper rhenana Zone, linguiformis Zone, Lower triangularis Zone, Middle triangularis Zone and Upper triangularis Zone are 0.4, 0.4, 0.4, 0.3, 0.4, 0.2, 0.8, 0.6, 0.8, 0.3, 0.3 and 0.3 Ma from bottom to top, respectively, and the duration of the Frasnian is 4.3 Ma. The conodont is the normal marine organism of the latest mass extinction (the latest linguiformis Zone) and the first recovery (including the whole Lower triangularis and Middle triangularis Zone) in the F-F transition. The conodont mass extinction and recovery lasted 200000-100000a and 0.6 Ma, respectively. We consider that average durations of the fossil zones calculated by reported numerical ages divided by fossil zone numbers within a stage or series or system cannot discovery complications and non-uniformity of evolutionary organisms and environments.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10973031, 10778635 and 10973030)the Chinese Lunar Exploration Project (Chang’E-1), STC of Shanghai Municipality (Grant No. 06DZ22101)+1 种基金the CAS Key Research Program (Grant No. KJCX2-YW-T13-2)the National High Technology Research and Development Program of China (Grant Nos. 2008AA12A209 and 2008AA12A210)
文摘In the Chinese lunar exploration project,the Chang'E-1 (CE-1) satellite was jointly monitored by the United S-band range and Doppler and the VLBI technique. A real-time reduction of the tracking data is realized to deduce the time series of the instantaneous state vectors (ISV) (position and velocity vec-tors) of the CE-1 satellite,and is applied to the orbital monitoring of pivotal arcs. This paper introduces this real-time data reduction method and its application to the orbital monitoring of pivotal arcs of the CE-1 satellite in order to serve as a source of criticism and reference.
基金supported by the Science and Technology Development Project of Jilin Provincial Science&Technology Department(201205080)the Science and Technology Research Projects of the Education Office of Jilin Province(No.2013.384)
文摘A new complex[Co(NIPH)(mbix)]n(1,H2NIPH = 5-nitroisophthalic acid,mbix =l,3-bis(imidazol-l-ylmethyl)benzene) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum,UV spectrum,TG and single-crystal X-ray diffraction.Pink crystals crystallize in the triclinic system,space group P1 with a = 8.3797(8),b= 10.2522(10),c= 13.4244(13) A,α=94.820(2),β=108.105(2),γ=104.816(2)°,V=1042.84(17) A^3,C(22)H(17)CoN5O6,Mr = 506.34,Dc = 1.613 g/cm^3,F(000) = 518,Z = 2,μ(MoKα) =0.876 mm^(-1),the final R = 0.0505 and wR = 0.1254 for 3267 observed reflections(I〉2σ(I)).The structure of 1 exhibits a two-dimensional network structure and is extended into a three-dimensional supramolecule through hydrogen bonds and n-n interactions.In addition,Natural Bond Orbital(NBO) analysis was performed by using the PBE0/LANL2 DZ method built in Gaussian 09 Program.The calculation results showed obvious covalent interactions between the coordinated atoms and Co(Ⅱ) ion.
基金supported by the National Natural Science Foundation of China(No:11102234)Provincial Level Project of China
文摘High-energy pulsed laser radiation may be the most feasible means to mitigate the threat of collision of a space station or other valuable space assets with orbital debris in the size range of 1–10 cm. Under laser irradiation, part of the debris material is ablated and provides an impulse to the debris particle. Proper direction of the impulse vector either deflects the object trajectory or forces the debris on a trajectory through the upper atmosphere, where it burns up. Most research concentrates on ground-based laser systems but pays little attention to space-based laser systems.There are drawbacks of a ground-based laser system in cleaning space debris. Therefore the placement of a laser system in space is proposed and investigated. Under assumed conditions,the elimination process of space debris is analyzed. Several factors such as laser repetition frequency, relative movement between the laser and debris, and inclination of debris particles which may exercise influence to the elimination effects are discussed. A project of a space-based laser system is proposed according to the numerical results of a computer study. The proposed laser system can eliminate debris of 1–10 cm and succeed in protecting a space station.
文摘目的探讨商业化软件计算球后脂肪体积,分析其与甲状腺相关性眼病(TAO)进展及预后的关系。方法收集2016年1月~2016年12月在我院内分泌科确诊的35例(70个眼眶)TAO患者的临床资料。测量1.5T眼眶MRI球后脂肪体积及眼外肌信号强度比值(SIR)分析其与临床各项指标的相关性,并收集12例(24个眼眶)健康人测量球后脂肪体积,初步比较TAO组及健康组体积的差异。结果脂肪体积与病程成正相关(r=0.480,P<0.01),病程6个月以内组与6~12个月组相比,脂肪体积差异不显著(P=0.084)。病程6个月以内组及病程6~12个月组球后脂肪体积均显著低于病程大于12个月组(P<0.01,P<0.05)。脂肪体积与突眼度存在相关性(r=0.622,P<0.01),突眼度每增加1 mm,球后脂肪体积将增加0.88 m L。临床活动性评分(CAS)与SIR值及促甲状腺素受体抗体(TRAb)存在相关性(r=0.536,r=0.416,P<0.01)。TAO组球后脂肪体积显著高于正常组(P<0.01)。结论 TAO病程1年以上可能是球后脂肪组织增多的高峰阶段,球后脂肪体积结合SIR值的测量有助于最佳激素治疗时机的探索及预后分析。
基金This work was supported by the National Key R&D Program of China(2016YFA0302500 , 2017YFA0303703)the National Natural Science Foundation of China(NSFC)(91950206 , 11874213)+2 种基金the Fundamental Research Funds for the Central Universities(1480605201)M.G.acknowledges the funding support from the Zhangjiang National Innovation Demonstration Zone(ZJ2019-ZD-005)X.F.acknowledges the funding support by Shanghai Science and Technology Development Funds(20QA1404100).
文摘Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical processes,the nonlinear harmonic field is coupled with the input field,laying a fundamental barrier to independent control of the interacting fields for holography.We propose and experimentally demonstrate high-dimensional orbital angular momentum(OAM)multiplexing nonlinear holography to overcome this problem.By dividing the wavefront of the fundamental wave into different orthogonal OAM channels,multiple OAM and polarization-dependent holographic images in both the fundamental wave and second-harmonic wave have been reconstructed independently in the spatial frequency domain through a type-II second harmonic generation process.Moreover,this method can be easily extended to cascadedχ2 nonlinear optical processes for multiplexing in more wavelength channels,leading to potential applications in multicasting in optical communications,multiwavelength display,multidimensional optical storage,anticounterfeiting,and optical encryption.