Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space rob...Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space robotics is one of the most promising approaches for various OOS missions;thus,research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide.In this paper,we review the structures,ground verification,and onorbit kinematics calibration technologies of space robotic systems for OOS.First,we systematically summarize the development of space robotic systems and OOS programs based on space robotics.Then,according to the structures and applications,these systems are divided into three categories:large space manipulators,humanoid space robots,and small space manipulators.According to the capture mechanisms adopted,the end-effectors are systematically analyzed.Furthermore,the ground verification facilities used to simulate a microgravity environment are summarized and compared.Additionally,the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects.Finally,the development trends of the structures,verification,and calibration technologies are discussed to extend this review work.展开更多
With the rapid development of space technology and the increasing demand for space missions,the traditional spacecraft manufacturing,deployment and launch methods have been unable to meet existing needs.In-space assem...With the rapid development of space technology and the increasing demand for space missions,the traditional spacecraft manufacturing,deployment and launch methods have been unable to meet existing needs.In-space assembly(ISA)technologies can effectively adapt to the assembly of large space structures,improve spacecraft performance,and reduce operating costs.In this paper,the development and technologies for ISA are reviewed.ISA is classified from multiple angles,and the research status of ISA is shown clearly through the visual mapping knowledge domain.Then the development status of autonomous robot assembly in the United States,Europe,Japan,Canada and China is reviewed.Furthermore,the key technologies of ISA are analyzed from three aspects:assembly structure design,robot technologies and integrated management technologies.ISA technologies are still facing major challenges and need to be further explored to promote future development.Finally,future development trends and potential applications of ISA are given,which show that ISA will play a vital role in human space exploration in the future.展开更多
Space debris is growing dramatically with the rapid pace of human exploration of space,which seriously threatens the safety of artificial spacecraft in orbit.Therefore,the active debris removal(ADR)is important.This r...Space debris is growing dramatically with the rapid pace of human exploration of space,which seriously threatens the safety of artificial spacecraft in orbit.Therefore,the active debris removal(ADR)is important.This review aims to review the ADR methods and to advance related research in the future.The current research and development status are clearly demonstrated by mapping knowledge domain and charts.In this paper,the latest research results are classified and summarized in detail from two aspects of space debris capture and removal.The scheme comparison and evaluation of all ADR methods are performed,and the applicable scopes of various methods are summarized.Each ADR method is scored using a cobweb evaluation model based on six indicators.Future development of ADR is discussed to promote further research interest.展开更多
The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-shea...The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.展开更多
基金the National Key R&D Program of China(Grant No.2017YFB1300400)the National Natural Science Foundation of China(Grant Nos.91748201 and 51775011)Beijing Natural Science Foundation(Gran No.3192017)。
文摘Recently,with the rapid development of aerospace technology,an increasing number of spacecraft is being launched into space.Additionally,the demands for on-orbit servicing(OOS)missions are rapidly increasing.Space robotics is one of the most promising approaches for various OOS missions;thus,research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide.In this paper,we review the structures,ground verification,and onorbit kinematics calibration technologies of space robotic systems for OOS.First,we systematically summarize the development of space robotic systems and OOS programs based on space robotics.Then,according to the structures and applications,these systems are divided into three categories:large space manipulators,humanoid space robots,and small space manipulators.According to the capture mechanisms adopted,the end-effectors are systematically analyzed.Furthermore,the ground verification facilities used to simulate a microgravity environment are summarized and compared.Additionally,the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects.Finally,the development trends of the structures,verification,and calibration technologies are discussed to extend this review work.
基金supported in part by National Key R&D Program of China(No.2018YFB1304600)the Natural Science Foundation of China(No.51775541)CAS Interdisciplinary Innovation Team(No.JCTD-2018-11)。
文摘With the rapid development of space technology and the increasing demand for space missions,the traditional spacecraft manufacturing,deployment and launch methods have been unable to meet existing needs.In-space assembly(ISA)technologies can effectively adapt to the assembly of large space structures,improve spacecraft performance,and reduce operating costs.In this paper,the development and technologies for ISA are reviewed.ISA is classified from multiple angles,and the research status of ISA is shown clearly through the visual mapping knowledge domain.Then the development status of autonomous robot assembly in the United States,Europe,Japan,Canada and China is reviewed.Furthermore,the key technologies of ISA are analyzed from three aspects:assembly structure design,robot technologies and integrated management technologies.ISA technologies are still facing major challenges and need to be further explored to promote future development.Finally,future development trends and potential applications of ISA are given,which show that ISA will play a vital role in human space exploration in the future.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.51775541)+2 种基金the CAS Interdisciplinary Innovation Team(Grant No.JCTD-2018-11)the State Key Laboratory of Robotics Foundation(Grant No.Y91Z0303)the Hundred-Talent Program(Chinese Academy of Sciences)(Grant No.Y8A3210304).
文摘Space debris is growing dramatically with the rapid pace of human exploration of space,which seriously threatens the safety of artificial spacecraft in orbit.Therefore,the active debris removal(ADR)is important.This review aims to review the ADR methods and to advance related research in the future.The current research and development status are clearly demonstrated by mapping knowledge domain and charts.In this paper,the latest research results are classified and summarized in detail from two aspects of space debris capture and removal.The scheme comparison and evaluation of all ADR methods are performed,and the applicable scopes of various methods are summarized.Each ADR method is scored using a cobweb evaluation model based on six indicators.Future development of ADR is discussed to promote further research interest.
基金Project(2006AA04Z228) supported by National Hi-tech Research and Development Program of China
文摘The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.