Abstract: Objective To apply the response surface-central composite design to developing and optimizing the oral fastdisintegrating tablets (ODT) formulation for Jiawei Qing’e, a kind of prescription of Chinese herba...Abstract: Objective To apply the response surface-central composite design to developing and optimizing the oral fastdisintegrating tablets (ODT) formulation for Jiawei Qing’e, a kind of prescription of Chinese herbal medicine.Methods The bitterness of Jiawei Qing’e was masked using Eudragit E-100 by solvent evaporation technique.Response surface approach was applied to investigating the interaction of formulation parameters in optimizing theformulation. The independent variables were Eudragit E-100/drug ratio (X1), amount of disintegrants (X2), and theamount of diluents (X3). The disintegration time (Y1), hardness (Y2), and weight variations of the tablets werecharacterized. Results The models predicted levels of X1= 4.63%, X2= 5.25%, and X3= 34.33%, for the optimalformulation having a hardness of 3.0 kg with the disintegration time of 30 s within experimental region. The observedresponse of Y1= 26.5 s and Y2= 3.14 kg reasonably agreed with the predicted response. Conclusion Responsesurface methodology shows the good predictability and reliability in optimizing the formulation. The optimized ODTof Jiawei Qing’e has acceptable taste, rapid disintegrating ability, and good mechanical strength.展开更多
基金Major Projects of National Science and Technology on"New Drug Creation and Development"(2012ZX09103201-0462012ZX09101212)
文摘Abstract: Objective To apply the response surface-central composite design to developing and optimizing the oral fastdisintegrating tablets (ODT) formulation for Jiawei Qing’e, a kind of prescription of Chinese herbal medicine.Methods The bitterness of Jiawei Qing’e was masked using Eudragit E-100 by solvent evaporation technique.Response surface approach was applied to investigating the interaction of formulation parameters in optimizing theformulation. The independent variables were Eudragit E-100/drug ratio (X1), amount of disintegrants (X2), and theamount of diluents (X3). The disintegration time (Y1), hardness (Y2), and weight variations of the tablets werecharacterized. Results The models predicted levels of X1= 4.63%, X2= 5.25%, and X3= 34.33%, for the optimalformulation having a hardness of 3.0 kg with the disintegration time of 30 s within experimental region. The observedresponse of Y1= 26.5 s and Y2= 3.14 kg reasonably agreed with the predicted response. Conclusion Responsesurface methodology shows the good predictability and reliability in optimizing the formulation. The optimized ODTof Jiawei Qing’e has acceptable taste, rapid disintegrating ability, and good mechanical strength.