Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect i...Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.展开更多
序贯最小优化算法是一种SVM s(Support VectorM ach ines)训练算法,该算法将一个大型QP(Quadratic Programm ing)问题分解为一系列最小规模的QP子问题,从而避免了多样本情形下的数值解不稳定及耗时问题,同时也不需要大的矩阵存储空间。...序贯最小优化算法是一种SVM s(Support VectorM ach ines)训练算法,该算法将一个大型QP(Quadratic Programm ing)问题分解为一系列最小规模的QP子问题,从而避免了多样本情形下的数值解不稳定及耗时问题,同时也不需要大的矩阵存储空间。本文在模糊支持向量机的基础上,提出了基于决策树的模糊序贯最小优化算法并对它进行了分析和研究,在对人脸图像进行独立成分分析后,用该算法进行多类人脸识别。通过在ORL人脸库上的实验结果表明,在样本类别较少的条件下,该算法可以取得较好的效果。展开更多
基金State Data Synthesis and Analysis Funds of China (No. 2005DKA32306 and No. 2006DKA 32308)State International Cooperation Project (No. 20073819)+1 种基金State Key Fundamental Science Funds of China (No. 2007FY110300)National Key Basic Research Project (973 project, No. 2005CB422208)
基金supported by the Fund of Forestry 948project(2015-4-52)the Fundamental Research Funds for the Central Universities(2572017DB05)the Natural Science Foundation of Heilongjiang Province(C2017005)
文摘Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.
文摘序贯最小优化算法是一种SVM s(Support VectorM ach ines)训练算法,该算法将一个大型QP(Quadratic Programm ing)问题分解为一系列最小规模的QP子问题,从而避免了多样本情形下的数值解不稳定及耗时问题,同时也不需要大的矩阵存储空间。本文在模糊支持向量机的基础上,提出了基于决策树的模糊序贯最小优化算法并对它进行了分析和研究,在对人脸图像进行独立成分分析后,用该算法进行多类人脸识别。通过在ORL人脸库上的实验结果表明,在样本类别较少的条件下,该算法可以取得较好的效果。