With the ability to generate forms with high efficiency and elegant geometry,topology optimization has been increasingly used in architectural and structural designs.However,the conventional topology optimization tech...With the ability to generate forms with high efficiency and elegant geometry,topology optimization has been increasingly used in architectural and structural designs.However,the conventional topology optimization techniques aim at achieving the structurally most efficient solution without any potential for architects or designers to control the design details.This paper introduces three strategies based on Bi-directional Evolutionary Structural Optimization(BESO)method to artificially pre-design the topological optimized structures.These strategies have been successfully applied in the computational morphogenesis of various structures for solving practical design problems.The results demonstrate that the developed methodology can provide the designer with structurally efficient and topologically different solutions according to their proposed designs with multi-filter radii,multi-volume fractions,and multi-weighting coefficients.This work establishes a general approach to integrating objective topology optimization methods with subjective human design preferences,which has great potential for practical applications in architecture and engineering industry.展开更多
To compensate for the imperfection of traditional bi-directional evolutionary structural optimization, material interpolation scheme and sensitivity filter functions are introduced. A suitable filter can overcome the ...To compensate for the imperfection of traditional bi-directional evolutionary structural optimization, material interpolation scheme and sensitivity filter functions are introduced. A suitable filter can overcome the checkerboard and mesh-dependency. And the historical information on accurate elemental sensitivity numbers are used to keep the objective function converging steadily. Apart from rational intervals of the relevant important parameters, the concept of distinguishing between active and non-active elements design is proposed, which can be widely used for improving the function and artistry of structures directly, especially for a one whose accurate size is not given. Furthermore, user-friendly software packages are developed to enhance its accessibility for practicing engineers and architects. And to reduce the time cost for large timeconsuming complex structure optimization, parallel computing is built-in in the MATLAB codes. The program is easy to use for engineers who may not be familiar with either FEA or structure optimization. And developers can make a deep research on the algorithm by changing the MATLAB codes. Several classical examples are given to show that the improved BESO method is superior for its handy and utility computer program software.展开更多
文摘With the ability to generate forms with high efficiency and elegant geometry,topology optimization has been increasingly used in architectural and structural designs.However,the conventional topology optimization techniques aim at achieving the structurally most efficient solution without any potential for architects or designers to control the design details.This paper introduces three strategies based on Bi-directional Evolutionary Structural Optimization(BESO)method to artificially pre-design the topological optimized structures.These strategies have been successfully applied in the computational morphogenesis of various structures for solving practical design problems.The results demonstrate that the developed methodology can provide the designer with structurally efficient and topologically different solutions according to their proposed designs with multi-filter radii,multi-volume fractions,and multi-weighting coefficients.This work establishes a general approach to integrating objective topology optimization methods with subjective human design preferences,which has great potential for practical applications in architecture and engineering industry.
基金This work was supported by the Australian Research Council(Grant No.FL190100014)the Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0100)+1 种基金the National Key Research and Development Program"Inter-governmental Cooperation in International Science and Technology Innovation"(Grant No.2022YFE0141400)the National Natural Science Foundation of China(Grant No.U1913603).
基金supported by the National Natural Science Foundation of China(No.51078311)
文摘To compensate for the imperfection of traditional bi-directional evolutionary structural optimization, material interpolation scheme and sensitivity filter functions are introduced. A suitable filter can overcome the checkerboard and mesh-dependency. And the historical information on accurate elemental sensitivity numbers are used to keep the objective function converging steadily. Apart from rational intervals of the relevant important parameters, the concept of distinguishing between active and non-active elements design is proposed, which can be widely used for improving the function and artistry of structures directly, especially for a one whose accurate size is not given. Furthermore, user-friendly software packages are developed to enhance its accessibility for practicing engineers and architects. And to reduce the time cost for large timeconsuming complex structure optimization, parallel computing is built-in in the MATLAB codes. The program is easy to use for engineers who may not be familiar with either FEA or structure optimization. And developers can make a deep research on the algorithm by changing the MATLAB codes. Several classical examples are given to show that the improved BESO method is superior for its handy and utility computer program software.