The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural ...The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.展开更多
基金Supported by the National Natural Science Foundation of China(No. 60803017)the National Key Basic Research and Development (973) Program of China (Nos. 2011CB302505 and 2011CB302805)supported by 2010-2011 and 2011-2012 IBM Ph.D. Fellowships
文摘The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.