Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to pres...Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.展开更多
In this paper,we solve the optimal constant problem in the setting of Ohsawa’s generalized L2extension theorem.As applications,we prove a conjecture of Ohsawa and the extended Suita conjecture,we also establish some ...In this paper,we solve the optimal constant problem in the setting of Ohsawa’s generalized L2extension theorem.As applications,we prove a conjecture of Ohsawa and the extended Suita conjecture,we also establish some relations between Bergman kernel and logarithmic capacity on compact and open Riemann surfaces.展开更多
Consider the regression model y_i=x_iβ+g(t_i)+e_i for i=1,2,...,n. Here g(·) is an unknown function, β is a parameter to be estimated, and e_i are random errors. Based on g(·) estimated by kernel type esti...Consider the regression model y_i=x_iβ+g(t_i)+e_i for i=1,2,...,n. Here g(·) is an unknown function, β is a parameter to be estimated, and e_i are random errors. Based on g(·) estimated by kernel type estimator for the case where (x_i,t_i) are i. i. d. design points, the adaptive estimator of β is investigated, and some results about the asymptotically optimal convergence rates of the estimates are also obtained. In the meantime, the family of nonparametric estimates of g(·) including the known kernel and nearest neighbor estimates is proposed. Based on the nonparametric estimate for the case that (x_i,t_i) are known and nonrandom, the asymptotic normality of least squares estimator of β is proved.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex...We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.展开更多
This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interio...This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.展开更多
This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving...This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.展开更多
Based on the idea of serendipity element,we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polygonalmeshes in this article.The explicit construction of quadrati...Based on the idea of serendipity element,we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polygonalmeshes in this article.The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates,and the quadratic serendipity element function space based on Wachspress coordinate is selected as the trial function space.Moreover,we construct a family of unified dual partitions for arbitrary convex polygonal meshes,which is crucial to finite volume element scheme,and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom.Finally,under certain geometric assumption conditions,the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained,and verified by numerical experiments.展开更多
The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional...The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional differential operators.In this paper,we focus on an optimal control problem governed by fractional differential equations with an integral constraint on the state variable.By the proposed first-order optimality condition consisting of a Lagrange multiplier,we design a spectral Galerkin discrete scheme with weighted orthogonal Jacobi polynomials to approximate the resulting state and adjoint state equations.Furthermore,a priori error estimates for state,adjoint state and control variables are discussed in details.Illustrative numerical tests are given to demonstrate the validity and applicability of our proposed approximations and theoretical results.展开更多
In this paper we deal with the convergence analysis of the finite element method for an elliptic penalized unilateral obstacle optimal control problem where the control and the obstacle coincide.Error estimates are es...In this paper we deal with the convergence analysis of the finite element method for an elliptic penalized unilateral obstacle optimal control problem where the control and the obstacle coincide.Error estimates are established for both state and control variables.We apply a fixed point type iteration method to solve the discretized problem.To corroborate our error estimations and the eficiency of our algorithms,the convergence results and numerical experiments are illustrated by concrete examples.展开更多
We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necess...We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.展开更多
In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the l...In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order AdamsBashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme,which ensures the positivity-preserving property, i.e., the numerical value of the phasevariable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special formof the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearizedstability analysis. A few numerical results, including both the constant-mobility andsolution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.展开更多
文摘Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.
基金supported by National Natural Science Foundation of China (Grant No. 11031008)
文摘In this paper,we solve the optimal constant problem in the setting of Ohsawa’s generalized L2extension theorem.As applications,we prove a conjecture of Ohsawa and the extended Suita conjecture,we also establish some relations between Bergman kernel and logarithmic capacity on compact and open Riemann surfaces.
基金Project sunoorted by the National Natural Science Foundation of China
文摘Consider the regression model y_i=x_iβ+g(t_i)+e_i for i=1,2,...,n. Here g(·) is an unknown function, β is a parameter to be estimated, and e_i are random errors. Based on g(·) estimated by kernel type estimator for the case where (x_i,t_i) are i. i. d. design points, the adaptive estimator of β is investigated, and some results about the asymptotically optimal convergence rates of the estimates are also obtained. In the meantime, the family of nonparametric estimates of g(·) including the known kernel and nearest neighbor estimates is proposed. Based on the nonparametric estimate for the case that (x_i,t_i) are known and nonrandom, the asymptotic normality of least squares estimator of β is proved.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金supported by the National Natural Science Foundation of China(11971276,12171287)Natural Science Foundation of Shandong Province(ZR2016JL004)+1 种基金supported by the China Postdoctoral Science Foundation(2021TQ0017,2021M700244)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210019)。
文摘We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.
基金supported by Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.
基金supported by Natural Science Foundation of Shandong Province (GrantNo. Y2008A19)Research Reward for Excellent Young Scientists from Shandong Province (Grant No. 2007BS01020)National Natural Science Foundation of China (Grant No. 11071244)
文摘This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.
基金supported by the National Natural Science Foundation of China(Nos.11871009,12271055)the Foundation of LCP and the Foundation of CAEP(CX20210044).
文摘Based on the idea of serendipity element,we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polygonalmeshes in this article.The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates,and the quadratic serendipity element function space based on Wachspress coordinate is selected as the trial function space.Moreover,we construct a family of unified dual partitions for arbitrary convex polygonal meshes,which is crucial to finite volume element scheme,and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom.Finally,under certain geometric assumption conditions,the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained,and verified by numerical experiments.
基金This work was partly supported by National Natural Science Foundation of China(Grant Nos.:12101283,12271233 and 12171287)Natural Science Foundation of Shandong Province(Grant Nos.:ZR2019YQ05,2019KJI003,and ZR2016JL004).
文摘The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional differential operators.In this paper,we focus on an optimal control problem governed by fractional differential equations with an integral constraint on the state variable.By the proposed first-order optimality condition consisting of a Lagrange multiplier,we design a spectral Galerkin discrete scheme with weighted orthogonal Jacobi polynomials to approximate the resulting state and adjoint state equations.Furthermore,a priori error estimates for state,adjoint state and control variables are discussed in details.Illustrative numerical tests are given to demonstrate the validity and applicability of our proposed approximations and theoretical results.
文摘In this paper we deal with the convergence analysis of the finite element method for an elliptic penalized unilateral obstacle optimal control problem where the control and the obstacle coincide.Error estimates are established for both state and control variables.We apply a fixed point type iteration method to solve the discretized problem.To corroborate our error estimations and the eficiency of our algorithms,the convergence results and numerical experiments are illustrated by concrete examples.
文摘We consider the oscillatory integral operator Ta,mf(X) f(y)dy, where the function f is a Schwartz function.In this paper, the restriction theorem on Sn-1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.
基金This work is supported in part by the grants NSFC 12071090(W.Chen)NSF DMS-2012669(C.Wang)+2 种基金NSFC 11871159Guangdong Provincial Key Laboratory for Computational Science and Material Design 2019B030301001(X.Wang)NSF DMS-1719854,DMS-2012634(S.Wise).C.Wang also thanks the Key Laboratory of Mathematics for Nonlinear Sciences,Fudan University,for the support.
文摘In this paper we propose and analyze a second order accurate numericalscheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order AdamsBashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme,which ensures the positivity-preserving property, i.e., the numerical value of the phasevariable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special formof the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearizedstability analysis. A few numerical results, including both the constant-mobility andsolution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.