Achieving sustainable livelihood is the ultimate goal of poverty alleviation efforts in mountainous areas,and selecting an optimal livelihood strategy for different poverty-type farmers greatly improves farmers’livel...Achieving sustainable livelihood is the ultimate goal of poverty alleviation efforts in mountainous areas,and selecting an optimal livelihood strategy for different poverty-type farmers greatly improves farmers’livelihood capital,resists livelihood risks,and promotes sustainable development.For farmers,optimal livelihood strategy means better employment opportunities,higher family income(or better income structure),and stronger employability or development potential.This paper classifies different types of farmers’poverty on the basis of a quantitative evaluation of farmers’livelihood capital in the Qin-ba Mountain Area in South-Shaanxi by using the k-means clustering method and subsequently the fuzzy evaluation method to evaluate the effectiveness of farmers’livelihood strategies.Then,the multi-attribute decision-making model is used to analyze the selection of optimal livelihood strategies for different poverty-type farmers.The results suggest a significant difference in the selection of the optimal livelihood strategy for different poverty-type farmers.Farmers without financial and human capital choose to"go out to work,"farmers lacking natural capital choose to"acquire social insurance and government relief,"farmers without physical capital choose to"use loans,"and farmers lacking social capital choose to"use savings."Studying the selection of optimal livelihood strategies for different poverty-type farmers can help to propose targeted sustainable livelihood optimization programs for farmers and accelerate efforts to overcome poverty in mountainous areas.展开更多
Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during...Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during the pre-COVID-19 period and the COVID-19 period.We also estimate the optimal weights,hedge ratios,and hedging effectiveness during both sample periods.We find that the return spillovers vary across the two periods for the Bitcoin–Ethereum,Bitcoin–Litecoin,and Ethereum–Litecoin pairs.However,the volatility transmissions are found to be different during the two sample periods for the Bitcoin–Ethereum and Bitcoin–Litecoin pairs.The constant conditional correlations between all pairs of cryptocurrencies are observed to be higher during the COVID-19 period compared to the pre-COVID-19 period.Based on optimal weights,investors are advised to decrease their investments(a)in Bitcoin for the portfolios of Bitcoin/Ethereum and Bitcoin/Litecoin and(b)in Ethereum for the portfolios of Ethereum/Litecoin during the COVID-19 period.All hedge ratios are found to be higher during the COVID-19 period,implying a higher hedging cost compared to the pre-COVID-19 period.Last,the hedging effectiveness is higher during the COVID-19 period compared to the pre-COVID-19 period.Overall,these findings provide useful information to portfolio managers and policymakers regarding portfolio diversification,hedging,forecasting,and risk management.展开更多
Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected anim...Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected animals, ingest contaminated dairy and animal products. In this paper, we developed a mathematical model for anthrax transmission dynamics in both human and animal populations with optimal control. The qualitative solution of the model behaviour was analyzed by determining Rhv, equilibrium points and sensitivity analysis. A vaccination class was incorporated into the model with waning immunity. Local and global stability of the model’s equilibria was found to be locally asymptotically stable whenever Rhv Rhv. It was revealed that reducing animal and human interaction rate, would decrease Rhv. We extended the model to optimal control in order to find the best control strategy in reducing anthrax infections. It showed that the effective strategy in combating the anthrax epidemics is vaccination of animals and prevention of humans.展开更多
Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style=&...Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.展开更多
Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations...Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.展开更多
A co-infection model for human papillomavirus(HPV)and syphilis with cost-effectiveness optimal control analysis is developed and presented.The full co-infectionmodel is shown to undergo the phenomenon of backward bifu...A co-infection model for human papillomavirus(HPV)and syphilis with cost-effectiveness optimal control analysis is developed and presented.The full co-infectionmodel is shown to undergo the phenomenon of backward bifurcation when a certain con-dition is satisfied.The global asymptotic stability of the disease-free equilibrium of thefull model is shown not to exist when the associated reproduction number is less thanunity.The existence of endemic equilibrium of the syphilis-only sub-model is shown toexist and the global asymptotic stability of the disease-free and endemic equilibria of thesyphilis-only sub-model was established,for a special case.Sensitivity analysis is alsocarried out on the parameters of the model.Using the syphilis associated reproductionnumber,R_(0s),as the response function,it is observed that the five-ranked parametersthat drive the dynamics of the co-infection model are the demographic parameter μ,the efective contact rate for syphilis transmission,β_(s),the progression rate to late stage ofsyphilis σ2,and syphilis treatment rates:τ1 and τ2 for co-infected individuals in com-partments Hi and Hl,respectively.Moreover,when the HPV associated reproductionnumber,R0h,is used as the response function,the five most dominant parameters thatdrive the dynamics of the model are the demographic parameter μ,the effective contactrate for HPV transinission,β_(h),the fraction of HPV infected who develop persistent HPV p1,the fraction of individuals vaccinated against incident HPV infection φ and the HPVvaccine eflicacy πh.Numerical simulations of the optimal control model showed that theoptimal control strategy which implements syphilis treatment controls for singly infectedindividuals is the most cost-effective of all the control strategies in reducing the burdenof HPV and syphilis co-infections.展开更多
In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(...In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(MSD).The optimal control model is developed with three control interventions,namely prevention(u_(1)),quarantine(u_(2))and chemical control(u_(3)).To achieve an optimal control strategy,we used the Pontryagin’s maximum principle obtain the Hamiltonian,the adjoint variables,the characterization of the controls and the optimality system.Numerical simulations are performed using Forward-backward sweep iterative method.The findings show that each integrated strategy is able to mitigate the disease in the specified time.However due to limited resources,it is important to find a cost-effective strategy.Using Incremental Cost-Effectiveness Ratio(ICER)a cost-effectiveness analysis is investigated and determined that the combination of prevention and quarantine is the best cost-effective strategy from the other integrated strategies.Therefore,policymakers and stakeholders should apply the integrated intervention to stop the spread of MSV in the maize population.展开更多
The newly proposed mega sub-controlled structure system(MSCSS)and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of meg...The newly proposed mega sub-controlled structure system(MSCSS)and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures.However,there is still a need for improvement to its basic structural arrangement.In this project,an advanced,reasonable arrangement of mega sub-controlled structure models,composed of three mega stories with different numbers and arrangements of substructures,are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses)under strong earthquake excitation.In addition,the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed.The area of the relative stiffness ratio RD,with different mass ratio MR,within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum)value is considered as an optimum region.It serves as a useful tool in practical engineering design.The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings.In addition,some analytical guidelines are provided for selecting the control parameters of the structure.展开更多
基金funded by MOE Project of Humanities and Social Sciences of China(Grant No.19YJAZH076)Soft Science Research Program of Shaanxi(Grant No.2018KRM065)Natural Science Foundation in Gansu(Grant No.1610RJZA096)
文摘Achieving sustainable livelihood is the ultimate goal of poverty alleviation efforts in mountainous areas,and selecting an optimal livelihood strategy for different poverty-type farmers greatly improves farmers’livelihood capital,resists livelihood risks,and promotes sustainable development.For farmers,optimal livelihood strategy means better employment opportunities,higher family income(or better income structure),and stronger employability or development potential.This paper classifies different types of farmers’poverty on the basis of a quantitative evaluation of farmers’livelihood capital in the Qin-ba Mountain Area in South-Shaanxi by using the k-means clustering method and subsequently the fuzzy evaluation method to evaluate the effectiveness of farmers’livelihood strategies.Then,the multi-attribute decision-making model is used to analyze the selection of optimal livelihood strategies for different poverty-type farmers.The results suggest a significant difference in the selection of the optimal livelihood strategy for different poverty-type farmers.Farmers without financial and human capital choose to"go out to work,"farmers lacking natural capital choose to"acquire social insurance and government relief,"farmers without physical capital choose to"use loans,"and farmers lacking social capital choose to"use savings."Studying the selection of optimal livelihood strategies for different poverty-type farmers can help to propose targeted sustainable livelihood optimization programs for farmers and accelerate efforts to overcome poverty in mountainous areas.
文摘Through the application of the VAR-AGARCH model to intra-day data for three cryptocurrencies(Bitcoin,Ethereum,and Litecoin),this study examines the return and volatility spillover between these cryptocurrencies during the pre-COVID-19 period and the COVID-19 period.We also estimate the optimal weights,hedge ratios,and hedging effectiveness during both sample periods.We find that the return spillovers vary across the two periods for the Bitcoin–Ethereum,Bitcoin–Litecoin,and Ethereum–Litecoin pairs.However,the volatility transmissions are found to be different during the two sample periods for the Bitcoin–Ethereum and Bitcoin–Litecoin pairs.The constant conditional correlations between all pairs of cryptocurrencies are observed to be higher during the COVID-19 period compared to the pre-COVID-19 period.Based on optimal weights,investors are advised to decrease their investments(a)in Bitcoin for the portfolios of Bitcoin/Ethereum and Bitcoin/Litecoin and(b)in Ethereum for the portfolios of Ethereum/Litecoin during the COVID-19 period.All hedge ratios are found to be higher during the COVID-19 period,implying a higher hedging cost compared to the pre-COVID-19 period.Last,the hedging effectiveness is higher during the COVID-19 period compared to the pre-COVID-19 period.Overall,these findings provide useful information to portfolio managers and policymakers regarding portfolio diversification,hedging,forecasting,and risk management.
文摘Anthrax is an infection caused by bacteria and it affects both human and animal populations. The disease can be categorized under zoonotic diseases and humans can contract infections through contact with infected animals, ingest contaminated dairy and animal products. In this paper, we developed a mathematical model for anthrax transmission dynamics in both human and animal populations with optimal control. The qualitative solution of the model behaviour was analyzed by determining Rhv, equilibrium points and sensitivity analysis. A vaccination class was incorporated into the model with waning immunity. Local and global stability of the model’s equilibria was found to be locally asymptotically stable whenever Rhv Rhv. It was revealed that reducing animal and human interaction rate, would decrease Rhv. We extended the model to optimal control in order to find the best control strategy in reducing anthrax infections. It showed that the effective strategy in combating the anthrax epidemics is vaccination of animals and prevention of humans.
文摘Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.
文摘Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.
文摘A co-infection model for human papillomavirus(HPV)and syphilis with cost-effectiveness optimal control analysis is developed and presented.The full co-infectionmodel is shown to undergo the phenomenon of backward bifurcation when a certain con-dition is satisfied.The global asymptotic stability of the disease-free equilibrium of thefull model is shown not to exist when the associated reproduction number is less thanunity.The existence of endemic equilibrium of the syphilis-only sub-model is shown toexist and the global asymptotic stability of the disease-free and endemic equilibria of thesyphilis-only sub-model was established,for a special case.Sensitivity analysis is alsocarried out on the parameters of the model.Using the syphilis associated reproductionnumber,R_(0s),as the response function,it is observed that the five-ranked parametersthat drive the dynamics of the co-infection model are the demographic parameter μ,the efective contact rate for syphilis transmission,β_(s),the progression rate to late stage ofsyphilis σ2,and syphilis treatment rates:τ1 and τ2 for co-infected individuals in com-partments Hi and Hl,respectively.Moreover,when the HPV associated reproductionnumber,R0h,is used as the response function,the five most dominant parameters thatdrive the dynamics of the model are the demographic parameter μ,the effective contactrate for HPV transinission,β_(h),the fraction of HPV infected who develop persistent HPV p1,the fraction of individuals vaccinated against incident HPV infection φ and the HPVvaccine eflicacy πh.Numerical simulations of the optimal control model showed that theoptimal control strategy which implements syphilis treatment controls for singly infectedindividuals is the most cost-effective of all the control strategies in reducing the burdenof HPV and syphilis co-infections.
文摘In this paper we formulated and analyzed an optimal deterministic eco-epidemiological model for the dynamics of maize streak virus(MSV)and examine the best strategy to fight maize population from maize streak disease(MSD).The optimal control model is developed with three control interventions,namely prevention(u_(1)),quarantine(u_(2))and chemical control(u_(3)).To achieve an optimal control strategy,we used the Pontryagin’s maximum principle obtain the Hamiltonian,the adjoint variables,the characterization of the controls and the optimality system.Numerical simulations are performed using Forward-backward sweep iterative method.The findings show that each integrated strategy is able to mitigate the disease in the specified time.However due to limited resources,it is important to find a cost-effective strategy.Using Incremental Cost-Effectiveness Ratio(ICER)a cost-effectiveness analysis is investigated and determined that the combination of prevention and quarantine is the best cost-effective strategy from the other integrated strategies.Therefore,policymakers and stakeholders should apply the integrated intervention to stop the spread of MSV in the maize population.
基金National Natural Science Foundation of China under Grant No.51878274。
文摘The newly proposed mega sub-controlled structure system(MSCSS)and related studies have drawn the attention of civil engineers for practice in improving the performance and enhancing the structural effectiveness of mega frame structures.However,there is still a need for improvement to its basic structural arrangement.In this project,an advanced,reasonable arrangement of mega sub-controlled structure models,composed of three mega stories with different numbers and arrangements of substructures,are designed to investigate the control performance of the models and obtain the optimal model configuration(model with minimum acceleration and displacement responses)under strong earthquake excitation.In addition,the dynamic parameters that affect the performance effectiveness of the optimal model of MSCSS are studied and discussed.The area of the relative stiffness ratio RD,with different mass ratio MR,within which the acceleration and displacement of the optimal model of MSCSS reaches its optimum(minimum)value is considered as an optimum region.It serves as a useful tool in practical engineering design.The study demonstrates that the proposed MSCSS configuration can efficiently control the displacement and acceleration of high rise buildings.In addition,some analytical guidelines are provided for selecting the control parameters of the structure.