针对小样本问题,提出了一种基于QR分解的线性图嵌入(Linear Extension of Graph Embedding,LGE)求解算法,并将其用于人脸识别。与传统的用主成分分析进行降维不同,新算法利用QR分解对数据进行降维,然后在降维后的空间利用线性图嵌入算...针对小样本问题,提出了一种基于QR分解的线性图嵌入(Linear Extension of Graph Embedding,LGE)求解算法,并将其用于人脸识别。与传统的用主成分分析进行降维不同,新算法利用QR分解对数据进行降维,然后在降维后的空间利用线性图嵌入算法进行二次特征抽取,最后利用最近邻分类器进行分类识别。新算法有效的解决了小样本问题,并且在降维的过程中不损失鉴别信息,提高了算法的识别率。在Yale和PIE人脸数据库的实验表明了本文算法在识别性能上优于传统算法。展开更多
将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE...将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性.展开更多
文摘针对小样本问题,提出了一种基于QR分解的线性图嵌入(Linear Extension of Graph Embedding,LGE)求解算法,并将其用于人脸识别。与传统的用主成分分析进行降维不同,新算法利用QR分解对数据进行降维,然后在降维后的空间利用线性图嵌入算法进行二次特征抽取,最后利用最近邻分类器进行分类识别。新算法有效的解决了小样本问题,并且在降维的过程中不损失鉴别信息,提高了算法的识别率。在Yale和PIE人脸数据库的实验表明了本文算法在识别性能上优于传统算法。
文摘将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性.