期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于稀疏学习的电力大数据压缩与高精度重建
1
作者 苏良立 王敏楠 +2 位作者 余仰淇 肖娅晨 肖戈 《电子设计工程》 2024年第14期68-72,共5页
电网的运行需要大量电力大数据的支持,为了降低传输工作量,设计基于稀疏学习的电力大数据压缩与高精度重建方法。采用最优复杂度模型处理电力大数据的缺失值,通过基于残差学习方法的DnCNN去噪模型,对大数据去噪。根据向量主成分分析方法... 电网的运行需要大量电力大数据的支持,为了降低传输工作量,设计基于稀疏学习的电力大数据压缩与高精度重建方法。采用最优复杂度模型处理电力大数据的缺失值,通过基于残差学习方法的DnCNN去噪模型,对大数据去噪。根据向量主成分分析方法,对电力大数据进行压缩处理。基于稀疏学习构建大数据重建网络模型,实现电力大数据的重建。实验测试结果表明,设计方法的数据压缩比最高达到0.986,综合矢量误差整体低于0.3%,归一化均方误差整体低于0.8%。 展开更多
关键词 稀疏学习 电力大数据 最优复杂度模型 向量主成分分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部