设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 m Vpp的差分电压信号。该全差分前置放大电路采用0.18μm CMOS工艺进...设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 m Vpp的差分电压信号。该全差分前置放大电路采用0.18μm CMOS工艺进行设计,当光电二极管电容为250 f F时,该光接收机前置放大电路的跨阻增益为92 d BΩ,-3 d B带宽为7.9 GHz,平均等效输入噪声电流谱密度约为23 p A/(0~8 GHz)。该电路采用电源电压为1.8 V时,跨阻放大器功耗为28 m W,限幅放大器功耗为80 m W,输出缓冲器功耗为40 m W,其芯片面积为800μm×1 700μm。展开更多
A power-configurable high performance preamplifier was implemented in standard 180-nm CMOS technology for 12 × 10 Gb/s high-density ultra-high speed parallel optical communication system. With critical limitation...A power-configurable high performance preamplifier was implemented in standard 180-nm CMOS technology for 12 × 10 Gb/s high-density ultra-high speed parallel optical communication system. With critical limitations on power consumption, area and fabrication cost, the preamplifier achieves high performance, e.g. high bandwidth, high trans-impedance gain, low noise and high stability. A novel feed-forward common gate (FCG) stage is adopted to alleviate contradictions on trans-impedance gain and bandwidth by using a low headroom con- suming approach to isolate a large input capacitance and using complex pole peaking techniques to substitute induc- tors to achieve bandwidth extension. A multi-supply power-configurable scheme was employed to avoid wasteful power caused by a pessimistic estimation of process-voltage-temperature (PVT) variation. Two representative sam- ples provide a trans-impedance gain of 53.9 dBf2, a 3-dB bandwidth of 6.8 GHz, a power dissipation of 6.26 mW without power-configuration and a trans-impedance gain of 52.1 dBg2, a 3-dB bandwidth of 8.1 GHz, a power dis- sipation of 6.35 mW with power-configuration, respectively. The measured average input-referred noise-current spectral density is no more than 28 pA/√Hz. The chip area is only 0.08 x 0.08 mm2.展开更多
A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB ban...A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB bandwidth of 10GHz, with a small signal gain of around 9dB. The post-stage distributed amplifier (DA) has a -3dB bandwidth of close to 20GHz,with a small signal gain of around 12dB. As a whole,the cascade preamplifier has a measured small signal gain of 21.3dB and a transimpedance of 55.3dBΩ in a 50Ω system. With a higher signal-to-noise ratio than that of the TIA and a markedly improved waveform distortion compared with that of the DA, the measured output eye diagram for 10Gb/s NRZ pseudorandom binary sequence is clear and symmetric.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
文摘设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 m Vpp的差分电压信号。该全差分前置放大电路采用0.18μm CMOS工艺进行设计,当光电二极管电容为250 f F时,该光接收机前置放大电路的跨阻增益为92 d BΩ,-3 d B带宽为7.9 GHz,平均等效输入噪声电流谱密度约为23 p A/(0~8 GHz)。该电路采用电源电压为1.8 V时,跨阻放大器功耗为28 m W,限幅放大器功耗为80 m W,输出缓冲器功耗为40 m W,其芯片面积为800μm×1 700μm。
基金Project supported by the National Natural Science Foundation of China(No.61106024)the Natural Science Foundation of Jiangsu Provice,China(No.BK2010411)
文摘A power-configurable high performance preamplifier was implemented in standard 180-nm CMOS technology for 12 × 10 Gb/s high-density ultra-high speed parallel optical communication system. With critical limitations on power consumption, area and fabrication cost, the preamplifier achieves high performance, e.g. high bandwidth, high trans-impedance gain, low noise and high stability. A novel feed-forward common gate (FCG) stage is adopted to alleviate contradictions on trans-impedance gain and bandwidth by using a low headroom con- suming approach to isolate a large input capacitance and using complex pole peaking techniques to substitute induc- tors to achieve bandwidth extension. A multi-supply power-configurable scheme was employed to avoid wasteful power caused by a pessimistic estimation of process-voltage-temperature (PVT) variation. Two representative sam- ples provide a trans-impedance gain of 53.9 dBf2, a 3-dB bandwidth of 6.8 GHz, a power dissipation of 6.26 mW without power-configuration and a trans-impedance gain of 52.1 dBg2, a 3-dB bandwidth of 8.1 GHz, a power dis- sipation of 6.35 mW with power-configuration, respectively. The measured average input-referred noise-current spectral density is no more than 28 pA/√Hz. The chip area is only 0.08 x 0.08 mm2.
文摘A high gain cascade connected preamplifier for optical receivers is developed with 0.5μm GaAs PHEMT technology from the Nanjing Electronic Devices Institute. To begin with, the transimpedance amplifier has a -3dB bandwidth of 10GHz, with a small signal gain of around 9dB. The post-stage distributed amplifier (DA) has a -3dB bandwidth of close to 20GHz,with a small signal gain of around 12dB. As a whole,the cascade preamplifier has a measured small signal gain of 21.3dB and a transimpedance of 55.3dBΩ in a 50Ω system. With a higher signal-to-noise ratio than that of the TIA and a markedly improved waveform distortion compared with that of the DA, the measured output eye diagram for 10Gb/s NRZ pseudorandom binary sequence is clear and symmetric.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.