过电压是威胁电缆线路安全的重要因素。由于海底长电缆线路的高电容特性,可能产生较为严重的过电压。结合工程实际,基于ATP-EMTP对两种典型的海上风电场及其输电的220 k V海底长电缆线路进行建模,并对海缆参数进行修正,对不同系统容量...过电压是威胁电缆线路安全的重要因素。由于海底长电缆线路的高电容特性,可能产生较为严重的过电压。结合工程实际,基于ATP-EMTP对两种典型的海上风电场及其输电的220 k V海底长电缆线路进行建模,并对海缆参数进行修正,对不同系统容量、不同长度、不同电缆类型下的海底电缆线路的工频过电压及2%统计合闸过电压进行仿真计算,同时计算了断路器发生一次重燃的分闸过电压。结果发现,在仅配置避雷器的情况下就能将操作过电压抑制在安全范围内,决定海底长电缆线路绝缘水平的主要因素是工频过电压。展开更多
在某500 k V变电站同一工况的开关操作下,多次测量开关设备暂态外壳电压和汇控柜内电流互感器二次端口的骚扰电压,发现测量值存在很大的差异。为了确定操作过电压与断路器合闸瞬间动静触头间电压初相位的关系,采用断路器相控技术,建立...在某500 k V变电站同一工况的开关操作下,多次测量开关设备暂态外壳电压和汇控柜内电流互感器二次端口的骚扰电压,发现测量值存在很大的差异。为了确定操作过电压与断路器合闸瞬间动静触头间电压初相位的关系,采用断路器相控技术,建立单相断路器在不同相位条件下合闸空载长线的分析模型。仿真结果表明,断路器在最佳相位下击穿时,空载线路侧最大操作过电压为0.96 p.u.,低于500 k V输电线路的额定电压,验证了断路器相控技术用于抑制线路操作过电压的有效性。此外,针对断路器三相同期合闸造成某相出现较大过电压的情况,提出断路器合闸空载线路的选相控制策略,可使三相线路操作过电压均保持在额定电压范围内。展开更多
文摘过电压是威胁电缆线路安全的重要因素。由于海底长电缆线路的高电容特性,可能产生较为严重的过电压。结合工程实际,基于ATP-EMTP对两种典型的海上风电场及其输电的220 k V海底长电缆线路进行建模,并对海缆参数进行修正,对不同系统容量、不同长度、不同电缆类型下的海底电缆线路的工频过电压及2%统计合闸过电压进行仿真计算,同时计算了断路器发生一次重燃的分闸过电压。结果发现,在仅配置避雷器的情况下就能将操作过电压抑制在安全范围内,决定海底长电缆线路绝缘水平的主要因素是工频过电压。
文摘在某500 k V变电站同一工况的开关操作下,多次测量开关设备暂态外壳电压和汇控柜内电流互感器二次端口的骚扰电压,发现测量值存在很大的差异。为了确定操作过电压与断路器合闸瞬间动静触头间电压初相位的关系,采用断路器相控技术,建立单相断路器在不同相位条件下合闸空载长线的分析模型。仿真结果表明,断路器在最佳相位下击穿时,空载线路侧最大操作过电压为0.96 p.u.,低于500 k V输电线路的额定电压,验证了断路器相控技术用于抑制线路操作过电压的有效性。此外,针对断路器三相同期合闸造成某相出现较大过电压的情况,提出断路器合闸空载线路的选相控制策略,可使三相线路操作过电压均保持在额定电压范围内。