目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LO...目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。展开更多
文摘目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。