Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important a...Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Tech- nologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r= 0.9, P〈 2.2 × 10^16; IMRg0 fibroblasts: r= 0.94, P 〈 2.2 ×10^16) and also have asignificant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r= 0.997, P= 2.3× 10^-4; IMR90: r- 0.934, P= 2 × 10^-2; Promoter: hESC: r= 0.995, P= 3.8 × 10^-4; IMR90: r= 0.996, P = 3.2 × 10^-4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.展开更多
染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)诞生于2013年,具有比脱氧核糖核酸酶I超敏感位点测序(deoxyribonuclease I hypersensitive site sequencing, DNase-seq...染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)诞生于2013年,具有比脱氧核糖核酸酶I超敏感位点测序(deoxyribonuclease I hypersensitive site sequencing, DNase-seq)和微球菌核酸酶敏感位点测序(micrococcal nuclease sequencing, MNase-seq)更快速、灵敏、简便的优点,是目前分析全基因组范围染色质开放区域的热点技术。通过该技术能获得染色质开放区域的相关信息,从而映射出转录因子等调控蛋白的结合区域和核小体定位等信息,对于研究表观遗传分子机制具有重要意义。本文比较了5种获取染色质开放区域技术的优缺点,重点介绍了ATAC-seq的原理和主要流程,描述了利用ATAC-seq技术研究染色质开放区域的发展概况以及ATAC-seq的相关应用,期望对真核生物全基因组水平的染色质开放区域研究、顺式调控元件鉴定以及遗传调控网络的解析等提供借鉴。展开更多
Schizophrenia(SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies(GWASs) of SZ have identified 〉100 risk loci. However,the causal variants/genes and the ca...Schizophrenia(SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies(GWASs) of SZ have identified 〉100 risk loci. However,the causal variants/genes and the causal mechanisms remain largely unknown,which hinders the translation of GWAS fi ndings into disease biology and drug targets. Most risk variants are noncoding,thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling,and open chromatin is a versatile predictor of regulatory sequences. Micro RNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specifi c induced pluripotent stem cells(i PSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specifi c to cell type and/or developmental stage. The emerging genome-editing technology enables the creation ofisogenic i PSCs and neurons to effi ciently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic,glutamatergic,and GABAergic neurotransmissions. SZ GWAS fi ndings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.展开更多
基金ACKNOWLEDGEMENTS The authors thank the National Natural Science Foundation of China (Grant No. 91131901), Fudan Graduate Students Innovative Grant (EZH1322383/001/002) and PSCIRT for financial support.
文摘Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Tech- nologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r= 0.9, P〈 2.2 × 10^16; IMRg0 fibroblasts: r= 0.94, P 〈 2.2 ×10^16) and also have asignificant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r= 0.997, P= 2.3× 10^-4; IMR90: r- 0.934, P= 2 × 10^-2; Promoter: hESC: r= 0.995, P= 3.8 × 10^-4; IMR90: r= 0.996, P = 3.2 × 10^-4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.
文摘染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)诞生于2013年,具有比脱氧核糖核酸酶I超敏感位点测序(deoxyribonuclease I hypersensitive site sequencing, DNase-seq)和微球菌核酸酶敏感位点测序(micrococcal nuclease sequencing, MNase-seq)更快速、灵敏、简便的优点,是目前分析全基因组范围染色质开放区域的热点技术。通过该技术能获得染色质开放区域的相关信息,从而映射出转录因子等调控蛋白的结合区域和核小体定位等信息,对于研究表观遗传分子机制具有重要意义。本文比较了5种获取染色质开放区域技术的优缺点,重点介绍了ATAC-seq的原理和主要流程,描述了利用ATAC-seq技术研究染色质开放区域的发展概况以及ATAC-seq的相关应用,期望对真核生物全基因组水平的染色质开放区域研究、顺式调控元件鉴定以及遗传调控网络的解析等提供借鉴。
基金supported by National Institutes of Health (NIH) Grant R21MH102685the North Shore University Health System 2011 Pilot Award
文摘Schizophrenia(SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies(GWASs) of SZ have identified 〉100 risk loci. However,the causal variants/genes and the causal mechanisms remain largely unknown,which hinders the translation of GWAS fi ndings into disease biology and drug targets. Most risk variants are noncoding,thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling,and open chromatin is a versatile predictor of regulatory sequences. Micro RNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specifi c induced pluripotent stem cells(i PSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specifi c to cell type and/or developmental stage. The emerging genome-editing technology enables the creation ofisogenic i PSCs and neurons to effi ciently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic,glutamatergic,and GABAergic neurotransmissions. SZ GWAS fi ndings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.